Some theorems on generalized Stirling numbers

被引:0
|
作者
Corcino, RB [1 ]
机构
[1] Univ Philippines, Dept Math, Quezon City 1101, Philippines
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Hsu and Shiue [10] obtained a kind of generalized Stirling number pairs with three free parameters and proved some of its properties. Here, some properties analogous to those of ordinary Stirling numbers are investigated, viz. horizontal recurrence relations, vertical recurrence relations, rational generating function, and explicit formulas. Furthermore, a kind of infinite sum which is useful in some combinatorial applications of the generalized Stirling numbers, is evaluated.
引用
收藏
页码:273 / 286
页数:14
相关论文
共 50 条
  • [31] Touchard like polynomials and generalized Stirling numbers
    Dattoli, G.
    Germano, B.
    Martinelli, M. R.
    Ricci, P. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (12) : 6661 - 6665
  • [32] A q-analogue of generalized Stirling numbers
    Corcino, Roberto B.
    Hsu, Leetsch Charles
    Tan, Evelyn L.
    FIBONACCI QUARTERLY, 2006, 44 (02): : 154 - 165
  • [33] On a new family of generalized Stirling and Bell numbers
    Mansour, Toufik
    Schork, Matthias
    Shattuck, Mark
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [34] POWER SUM IDENTITIES WITH GENERALIZED STIRLING NUMBERS
    Boyadzhiev, Khristo N.
    FIBONACCI QUARTERLY, 2008, 46-47 (04): : 326 - 330
  • [35] Occupancy Problems Related to the Generalized Stirling Numbers
    Thierry E. Huillet
    Journal of Statistical Physics, 191
  • [36] A Newton Interpolation Approach to Generalized Stirling Numbers
    Xu, Aimin
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [37] A GENERALIZED CLASS OF RESTRICTED STIRLING AND LAH NUMBERS
    Mansour, Toufik
    Shattuck, Mark
    MATHEMATICA SLOVACA, 2018, 68 (04) : 727 - 740
  • [38] ON SOME ARITHMETICAL PROPERTIES OF STIRLING NUMBERS
    PINTER, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1992, 40 (1-2): : 91 - 95
  • [39] Some Properties of Associated Stirling Numbers
    Zhao, Feng-Zhen
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (01)
  • [40] SOME THEOREMS ON STIRLING-TYPE PAIRS
    HSU, LC
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1993, 36 : 525 - 535