Galois groups of modules and inverse polynomial modules

被引:1
|
作者
Park, Sangwon [1 ]
Jeong, Jinsun [1 ]
机构
[1] Dong A Univ, Dept Math, Pusan 604714, South Korea
关键词
injective module; injective envelope; Galois group; inverse polynomial module;
D O I
10.4134/BKMS.2007.44.2.225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an injective envelope E of a left R-module M, there is an associative Galois group Gal(phi). Let R be a left noetherian ring and E be an injective envelope of All, then there is an injective envelope E[x(-1)] of an inverse polynomial module M[x(-1)] as a left R[x]-module and we can define an associative Galois group Gal(phi[x(-1)]). In this paper we describe the relations between Gal(phi) and Gal(phi[x(-1)]). Then we extend the Galois group of inverse polynomial module and can get Gal(phi[x(-s)]), where S is a submonoid of N (the set of all natural numbers).
引用
收藏
页码:225 / 231
页数:7
相关论文
共 50 条
  • [31] Carlitz modules and Galois module structure
    Aiba, A
    JOURNAL OF NUMBER THEORY, 1997, 62 (01) : 213 - 219
  • [32] On counting rings of integers as Galois modules
    Agboola, A.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 663 : 1 - 31
  • [33] MULTIVARIABLE (φ,Γ)-MODULES AND REPRESENTATIONS OF PRODUCTS OF GALOIS GROUPS: THE CASE OF THE IMPERFECT RESIDUE FIELD
    Ray, Jishnu
    Wei, Feng
    Zabradi, Gergely
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2021, 149 (03): : 521 - 546
  • [34] GALOIS THEORY OF ESSENTIAL EXTENSIONS OF MODULES
    WIEGAND, S
    CANADIAN JOURNAL OF MATHEMATICS, 1972, 24 (04): : 573 - &
  • [35] On some modules associated with Galois orbits
    Alexandru, Victor
    Vajaitu, Marian
    Zaharescu, Alexandru
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (01): : 3 - 11
  • [36] Galois functors and generalised Hopf modules
    Bachuki Mesablishvili
    Robert Wisbauer
    Journal of Homotopy and Related Structures, 2014, 9 : 199 - 222
  • [37] Index formulae for integral Galois modules
    Bartel, Alex
    de Smit, Bart
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 88 : 845 - 859
  • [38] CHINESE REMAINDER THEOREMS AND GALOIS MODULES
    ORMEROD, N
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1986, 40 : 276 - 286
  • [39] Galois module structure of Tate modules
    Martha Rzedowski-Calderón
    Gabriel Villa Salvador
    Manohar L. Madan
    Mathematische Zeitschrift, 1997, 224 : 77 - 101
  • [40] The Galois image of twisted Carlitz modules
    Gekeler, Ernst-Ulrich
    JOURNAL OF NUMBER THEORY, 2016, 163 : 316 - 330