Galois groups of modules and inverse polynomial modules

被引:1
|
作者
Park, Sangwon [1 ]
Jeong, Jinsun [1 ]
机构
[1] Dong A Univ, Dept Math, Pusan 604714, South Korea
关键词
injective module; injective envelope; Galois group; inverse polynomial module;
D O I
10.4134/BKMS.2007.44.2.225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an injective envelope E of a left R-module M, there is an associative Galois group Gal(phi). Let R be a left noetherian ring and E be an injective envelope of All, then there is an injective envelope E[x(-1)] of an inverse polynomial module M[x(-1)] as a left R[x]-module and we can define an associative Galois group Gal(phi[x(-1)]). In this paper we describe the relations between Gal(phi) and Gal(phi[x(-1)]). Then we extend the Galois group of inverse polynomial module and can get Gal(phi[x(-s)]), where S is a submonoid of N (the set of all natural numbers).
引用
收藏
页码:225 / 231
页数:7
相关论文
共 50 条