Life-Cycle Energy Use and Greenhouse Gas Emissions of a Building-Scale Wastewater Treatment and Nonpotable Reuse System

被引:46
|
作者
Hendrickson, Thomas P. [1 ]
Nguyen, Mi T. [1 ,2 ]
Sukardi, Marsha [3 ]
Miot, Alexandre [3 ]
Horvath, Arpad [1 ,2 ]
Nelson, Kara L. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, ReNUWIt Engn Res Ctr, Berkeley, CA 94720 USA
[3] San Francisco Publ Util Commiss, San Francisco, CA 94102 USA
基金
美国国家科学基金会;
关键词
SANITATION SYSTEM; URBAN WATER; STRATEGIES;
D O I
10.1021/acs.est.5b01677
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Treatment and water reuse in decentralized systems is envisioned to play a greater role in our future urban water infrastructure due to growing populations and uncertainty in quality and quantity of traditional water resources. In this study, we utilized life-cycle assessment (LCA) to analyze the energy consumption and greenhouse gas (GHG) emissions of an operating Living Machine (LM) wetland treatment system that recycles wastewater in an office building. The study also assessed the performance of the local utility's centralized wastewater treatment plant, which was found to be significantly more efficient than the LM (79% less energy, 98% less GHG emissions per volume treated). To create a functionally equivalent comparison, the study developed a hypothetical scenario in which the same LM design flow is recycled via centralized infrastructure. This comparison revealed that the current LM has energy consumption advantages (8% less), and a theoretically improved LM design could have GHG advantages (24% less) over the centralized reuse system. The methodology in this study can be applied to other case studies and scenarios to identify conditions under which decentralized water reuse can lower GHG emissions and energy use compared to centralized water reuse when selecting alternative approaches to meet growing water demands.
引用
收藏
页码:10303 / 10311
页数:9
相关论文
共 50 条
  • [21] Life cycle greenhouse gas emissions and energy analysis of prefabricated reusable building modules
    Aye, Lu
    Ngo, T.
    Crawford, R. H.
    Gammampila, R.
    Mendis, P.
    ENERGY AND BUILDINGS, 2012, 47 : 159 - 168
  • [22] Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines
    Strogen, Bret
    Horvath, Arpad
    Zilberman, David
    BIORESOURCE TECHNOLOGY, 2013, 150 : 476 - 485
  • [23] Life-Cycle Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum
    Burnham, Andrew
    Han, Jeongwoo
    Clark, Corrie E.
    Wang, Michael
    Dunn, Jennifer B.
    Palou-Rivera, Ignasi
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (02) : 619 - 627
  • [24] Life-Cycle Fossil Energy Consumption and Greenhouse Gas Emissions of Bioderived Chemicals and Their Conventional Counterparts
    Adom, Felix
    Dunn, Jennifer B.
    Han, Jeongwoo
    Sather, Norm
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (24) : 14624 - 14631
  • [25] Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions
    Zhou, Guanghui
    Ou, Xunmin
    Zhang, Xiliang
    ENERGY POLICY, 2013, 59 : 875 - 884
  • [26] Life-Cycle Greenhouse Gas Emissions of Materials Used in Road Construction
    Hanson, Christopher S.
    Noland, Robert B.
    Cavale, Karthik Rao
    TRANSPORTATION RESEARCH RECORD, 2012, (2287) : 174 - 181
  • [27] Life-cycle greenhouse gas emissions of corn kernel fiber ethanol
    Qin, Zhangcai
    Li, Qianfeng
    Wang, Michael
    Han, Jeongwoo
    Dunn, Jennifer B.
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2018, 12 (06): : 1013 - 1022
  • [28] The life-cycle assessment of greenhouse gas emissions and life-cycle costs of e-waste management in Thailand
    Aweewan Mangmeechai
    Sustainable Environment Research, 32
  • [29] The life-cycle assessment of greenhouse gas emissions and life-cycle costs of e-waste management in Thailand
    Mangmeechai, Aweewan
    SUSTAINABLE ENVIRONMENT RESEARCH, 2022, 32 (01)
  • [30] Life-cycle energy and greenhouse gas analysis of three building types in a residential area in Lisbon
    Bastos, Joana
    Batterman, Stuart A.
    Freire, Fausto
    ENERGY AND BUILDINGS, 2014, 69 : 344 - 353