Multiple positive solutions for singular quasilinear multipoint BVPs with the first-order derivative

被引:3
|
作者
Jiang, Weihua [1 ,2 ]
Wang, Bin [3 ]
Guo, Yanping [1 ]
机构
[1] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
[2] Hebei Normal Univ, Coll Math & Sci Informat, Shijiazhuang 050016, Hebei, Peoples R China
[3] Hebei Profess & Technol Coll Chem & Pharmaceut En, Dept Basic Courses, Shijiazhuang 050031, Hebei, Peoples R China
关键词
D O I
10.1155/2008/728603
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of at least three positive solutions for differential equation (phi(p)(u'(t)))' + g(t)f(t, u(t), u'(t)) = 0, under one of the following boundary conditions: u(0) = Sigma(m-2)(i=1)a(i)u(xi(i)), phi(p)(u'(1)) = Sigma(m-2)(i=1) b(i)phi(p)(u'(xi(i))) or phi(p)(u'(0)) = Sigma(m-2)(i=1) a(i)phi(p)(u'(xi(i))), u(1) = Sigma(m-2)(i=1) b(i)u(xi(i)) is obtained by using the H. Amann fixed point theorem, where phi(p)(s) = vertical bar s vertical bar(p-2) s, p > 1, 0 <xi(1) < xi(2) < . . . < xi(m-2) < 1, a(i) > Sigma(m-2)(i=1)a(i) < 1, 0 < Sigma(m-2)(i=1) b(i) < 1. The interesting thing is that g(t) may be singular at any point of [0,1] and f may be noncontinuous. Copyright (c) 2008 Weihua Jiang et al.
引用
收藏
页数:8
相关论文
共 50 条