Multiple positive solutions for singular quasilinear multipoint BVPs with the first-order derivative

被引:3
|
作者
Jiang, Weihua [1 ,2 ]
Wang, Bin [3 ]
Guo, Yanping [1 ]
机构
[1] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
[2] Hebei Normal Univ, Coll Math & Sci Informat, Shijiazhuang 050016, Hebei, Peoples R China
[3] Hebei Profess & Technol Coll Chem & Pharmaceut En, Dept Basic Courses, Shijiazhuang 050031, Hebei, Peoples R China
关键词
D O I
10.1155/2008/728603
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of at least three positive solutions for differential equation (phi(p)(u'(t)))' + g(t)f(t, u(t), u'(t)) = 0, under one of the following boundary conditions: u(0) = Sigma(m-2)(i=1)a(i)u(xi(i)), phi(p)(u'(1)) = Sigma(m-2)(i=1) b(i)phi(p)(u'(xi(i))) or phi(p)(u'(0)) = Sigma(m-2)(i=1) a(i)phi(p)(u'(xi(i))), u(1) = Sigma(m-2)(i=1) b(i)u(xi(i)) is obtained by using the H. Amann fixed point theorem, where phi(p)(s) = vertical bar s vertical bar(p-2) s, p > 1, 0 <xi(1) < xi(2) < . . . < xi(m-2) < 1, a(i) > Sigma(m-2)(i=1)a(i) < 1, 0 < Sigma(m-2)(i=1) b(i) < 1. The interesting thing is that g(t) may be singular at any point of [0,1] and f may be noncontinuous. Copyright (c) 2008 Weihua Jiang et al.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Multiple Positive Solutions for Singular Quasilinear Multipoint BVPs with the First-Order Derivative
    Weihua Jiang
    Bin Wang
    Yanping Guo
    Boundary Value Problems, 2008
  • [2] Positive solutions of multipoint φ-Laplacian BVPs with first-order derivative dependence
    Bachouche, K.
    Tair, H.
    Dogan, A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (06)
  • [3] Positive solution for singular third-order BVPs on the half line with first-order derivative dependence
    Benmezai, Abdelhamid
    Sedkaoui, El-Djouher
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (01) : 105 - 126
  • [4] MULTIPLE POSITIVE SOLUTIONS FOR SINGULAR φ-LAPLACIAN BVPS WITH DERIVATIVE DEPENDENCE ON [0, +∞)
    Djebali, Smail
    Saifi, Ouiza
    DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (01): : 93 - 119
  • [5] Infinitely Many Positive Solutions to Nonlinear First-Order Iterative Systems of Singular BVPs on Time Scales
    Zheng, Famei
    Wang, Xiaojing
    Cheng, Xiwang
    Du, Bo
    SYMMETRY-BASEL, 2023, 15 (08):
  • [6] Positive periodic solutions of first-order singular systems
    Chen, Ruipeng
    Ma, Ruyun
    He, Zhiqian
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11421 - 11428
  • [7] Positive Solutions to Nonlinear First-Order Nonlocal BVPs with Parameter on Time Scales
    Chenghua Gao
    Hua Luo
    Boundary Value Problems, 2011
  • [8] Positive Solutions to Nonlinear First-Order Nonlocal BVPs with Parameter on Time Scales
    Gao, Chenghua
    Luo, Hua
    BOUNDARY VALUE PROBLEMS, 2011,
  • [9] POSITIVE PERIODIC SOLUTIONS OF THE FIRST-ORDER SINGULAR DISCRETE SYSTEMS
    Ruipeng Chen
    Xiaoya Li
    AnnalsofAppliedMathematics, 2018, 34 (01) : 47 - 57
  • [10] Multiple positive solutions for singular BVPs on the positive half-line
    Djebali, Smail
    Mebarki, Karima
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (12) : 2940 - 2952