On the Cauchy problem for a two-component Degasperis-Procesi system

被引:27
|
作者
Yan, Kai [1 ]
Yin, Zhaoyang [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
Two-component Degasperis-Procesi system; Local well-posedness; Besov spaces; Blow-up; SHALLOW-WATER EQUATION; BLOW-UP PHENOMENA; CAMASSA-HOLM EQUATION; GLOBAL WEAK SOLUTIONS; PERIODIC INTEGRABLE EQUATION; WELL-POSEDNESS; PEAKON SOLUTIONS; WAVE SOLUTIONS; GEODESIC-FLOW; SHOCK-WAVES;
D O I
10.1016/j.jde.2011.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the Cauchy problem for a two-component Degasperis-Procesi system. Firstly, the local well-posedness for this system in the nonhomogeneous Besov spaces is established. Then the precise blow-up scenario for strong solutions to the system is derived. Finally, two new blow-up criterions and the exact blow-up rate of strong solutions to the system are presented. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2131 / 2159
页数:29
相关论文
共 50 条
  • [31] Exact solutions to Degasperis-Procesi equation
    Zhang Lin-Na
    Fu Zun-Tao
    Liu Shi-Kuo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (01) : 48 - 50
  • [32] The bifurcation and peakon for Degasperis-Procesi equation
    Yu, Liqin
    Tian, Lixin
    Wang, Xuedi
    CHAOS SOLITONS & FRACTALS, 2006, 30 (04) : 956 - 966
  • [33] Two-Mode Wave Solutions to the Degasperis-Procesi Equation
    Zheng-Di, Zhang
    Qin-Sheng, Bi
    CHINESE PHYSICS LETTERS, 2008, 25 (12) : 4211 - 4214
  • [34] Solvability of the Stochastic Degasperis-Procesi Equation
    Lynnyngs K. Arruda
    Nikolai V. Chemetov
    Fernanda Cipriano
    Journal of Dynamics and Differential Equations, 2023, 35 : 523 - 542
  • [35] A Lionville theorem for the Degasperis-Procesi equation
    Brandolese, Lorenzo
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 16 (03) : 759 - 765
  • [36] Solvability of the Stochastic Degasperis-Procesi Equation
    Arruda, Lynnyngs K.
    Chemetov, Nikolai V.
    Cipriano, Fernanda
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (01) : 523 - 542
  • [37] Wave breaking for the Degasperis-Procesi equation
    Zhao, Tiantian
    Yan, Kai
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 83
  • [38] Persistence properties for the Degasperis-Procesi equation
    Henry, David
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2008, 5 (01) : 99 - 111
  • [39] Exact Solutions to Degasperis-Procesi Equation
    ZHANG Lin-Na~1 FU Zun-Tao~(1
    CommunicationsinTheoreticalPhysics, 2008, 50 (07) : 48 - 50
  • [40] Dressing Method for the Degasperis-Procesi Equation
    Constantin, Adrian
    Ivanov, Rossen
    STUDIES IN APPLIED MATHEMATICS, 2017, 138 (02) : 205 - 226