A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability

被引:95
|
作者
George, Mathew [1 ]
Pandey, A. K. [2 ]
Abd Rahim, Nasrudin [1 ,3 ]
Tyagi, V. V. [4 ,5 ]
Shahabuddin, Syed [6 ]
Saidur, R. [2 ]
机构
[1] Univ Malaya, Wisma R&D, UM Power Energy Dedicated Adv Ctr UMPEDAC, Higher Inst,Ctr Excellence HICoE, Level 4,Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia
[2] Sunway Univ, Sch Sci & Technol, Res Ctr Nanomat & Energy Technol RCNMET, 5 Jalan Univ, Petaling Jaya 47500, Selangor Darul, Malaysia
[3] King Abdulaziz Univ, Renewable Energy Res Grp, Jeddah 21589, Saudi Arabia
[4] Shri Mata Vaishno Devi Univ, Sch Energy Management, Katra 182320, J&K, India
[5] King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 80200, Saudi Arabia
[6] Pandit Deendayal Petr Univ, Sch Technol, Dept Sci, Gandhinagar 382007, Gujarat, India
关键词
Latent heat storage; Paraffin wax; Phase change material; Polyaniline; Thermal conductivity; ENERGY-STORAGE; PARAFFIN WAX; STEARIC-ACID; ENHANCEMENT; GRAPHITE; PERFORMANCE; MANAGEMENT; CONVERSION;
D O I
10.1016/j.solener.2020.04.087
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An energy source is required that has potential to reduce global warming, energy cost and create environmental sustainability. Solar energy is a viable candidate with 120 petajoules of energy on earth per second. To utilize this energy the present research explores the effect of the addition of conducting polyaniline (PANI) and cupric (II) oxide (CuO) nanoparticles within the matrix of paraffin wax. The Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analyzer (TGA), Differential Scanning Calorimetry (DSC), Ultraviolet-Visible-Near Infrared Spectrometer (UV-VIS) and thermal conductivity characterization of the prepared composite were performed. An enhancement of latent heat capacity of paraffin/PANI nanocomposite by 8.20% and paraffin/CuO composite by 7.81% was observed. Thermal conductivity of Paraffin/PANI was increased by similar to 46.8% for a 1% weight concentration of PANI in paraffin wax the same concentration as maximum latent heat capacity. In the case of paraffin/CuO composite, the maximum increment of thermal conductivity was found to be similar to 63.6%. To check the thermal reliability of the formulated nanocomposite, the base paraffin and nanocomposites were subjected to thermal cycling of 200 cycles. The DSC results showed that paraffin/PANI nanocomposite outperformed both base paraffin wax and paraffin/CuO composite. With comparable thermal conductivity to Paraffin/CuO composite, better latent heat capacity and improved thermal reliability Paraffin/PANI composite results are encouraging for the application in solar application area.
引用
收藏
页码:448 / 458
页数:11
相关论文
共 50 条
  • [21] Experimental study on thermal conductivity of composite phase change material of fatty acid and paraffin
    Yan, Quanying
    Liu, Chao
    Zhang, Jing
    MATERIALS RESEARCH EXPRESS, 2019, 6 (06)
  • [22] Investigating thermal properties of using nano-tubular ZnO powder in paraffin as phase change material composite for thermal energy storage
    Sahan, Nurten
    Paksoy, Halime
    COMPOSITES PART B-ENGINEERING, 2017, 126 : 88 - 93
  • [23] Synthesis and thermal properties of nanoencapsulation of paraffin as phase change material for latent heat thermal energy storage
    Zhang N.
    Yuan Y.
    Energy and Built Environment, 2020, 1 (04): : 410 - 416
  • [24] Metallic wood-based phase change material with superior anisotropic thermal conductivity and energy storage capacity
    Wei, Rongjun
    Guo, Jin
    Wang, Zhichuang
    Wang, Xuechun
    Wang, Tinghuan
    Wang, Zhenyu
    He, Zhengbin
    Yi, Songlin
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 222
  • [25] Effects of carbon nanotubes additive on thermal conductivity and thermal energy storage properties of a novel composite phase change material
    Sari, Ahmet
    Bicer, Alper
    Hekimoglu, Gokhan
    JOURNAL OF COMPOSITE MATERIALS, 2019, 53 (21) : 2967 - 2980
  • [26] Superior Thermal Conductivity and Charging Performance of Zinc Oxide Dispersed Paraffin Wax for Thermal Energy Storage Applications
    Sivapalan, B.
    Suganthi, K. S.
    Kiruthika, S.
    Saranprabhu, M. K.
    Rajan, K. S.
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 41 (08) : 2389 - 2404
  • [27] Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage
    Li, Min
    Guo, Qiangang
    Nutt, Steven
    SOLAR ENERGY, 2017, 146 : 1 - 7
  • [28] Study on paraffin/expanded graphite composite phase change thermal energy storage material
    Zhang, ZG
    Fang, XM
    ENERGY CONVERSION AND MANAGEMENT, 2006, 47 (03) : 303 - 310
  • [29] Study on thermal properties of graphtie/paraffin composites as phase change heat storage material
    Zhang, Xiurong
    Zhu, Dongsheng
    Gao, Jinwei
    Wu, Shuying
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2010, 24 (03): : 332 - 336
  • [30] Ultra-high thermal conductivity and mechanical properties of a paraffin composite as a thermal conductive phase change materials for novel heat management
    Lee, Wondu
    Seo, Minkyung
    Kim, Jooheon
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 220