Dual Contrastive Network for Sequential Recommendation

被引:15
|
作者
Lin, Guanyu [1 ]
Gao, Chen [1 ]
Li, Yinfeng [1 ]
Zheng, Yu [1 ]
Li, Zhiheng [2 ]
Jin, Depeng [1 ]
Li, Yong [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing, Peoples R China
[2] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Automat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Sequential recommendation; Self-Supervised Learning; Contrastive Learning;
D O I
10.1145/3477495.3531918
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Widely applied in today's recommender systems, sequential recommendation predicts the next interacted item for a given user via his/her historical item sequence. However, sequential recommendation suffers data sparsity issue like most recommenders. To extract auxiliary signals from the data, some recent works exploit self-supervised learning to generate augmented data via dropout strategy, which, however, leads to sparser sequential data and obscure signals. In this paper, we propose Dual Contrastive Network (DCN) to boost sequential recommendation, from a new perspective of integrating auxiliary user-sequence for items. Specifically, we propose two kinds of contrastive learning. The first one is the dual representation contrastive learning that minimizes the distances between embeddings and sequence-representations of users/items. The second one is the dual interest contrastive learning which aims to self-supervise the static interest with the dynamic interest of next item prediction via auxiliary training. We also incorporate the auxiliary task of predicting next user for a given item's historical user sequence, which can capture the trends of items preferred by certain types of users. Experiments on benchmark datasets verify the effectiveness of our proposed method. Further ablation study also illustrates the boosting effect of the proposed components upon different sequential models.
引用
收藏
页码:2686 / 2691
页数:6
相关论文
共 50 条
  • [31] HICL: Hierarchical Intent Contrastive Learning for sequential recommendation
    Kang, Yan
    Yuan, Yancong
    Pu, Bin
    Yang, Yun
    Zhao, Lei
    Guo, Jing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [32] Learnable Model Augmentation Contrastive Learning for Sequential Recommendation
    Hao, Yongjing
    Zhao, Pengpeng
    Xian, Xuefeng
    Liu, Guanfeng
    Zhao, Lei
    Liu, Yanchi
    Sheng, Victor S.
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 3963 - 3976
  • [33] Multi-intent Driven Contrastive Sequential Recommendation
    Zheng, Yiyuan
    Li, Beibei
    Jin, Beihong
    Zhao, Rui
    Lai, Weijiang
    Xiang, Tao
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-APPLIED DATA SCIENCE TRACK, PT IX, ECML PKDD 2024, 2024, 14949 : 141 - 156
  • [34] Sequential Recommendation with Dual Learning
    Zhang, Chenliang
    Shi, Lingfeng
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 53 - 60
  • [35] Ensemble Modeling with Contrastive Knowledge Distillation for Sequential Recommendation
    Du, Hanwen
    Yuan, Huanhuan
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Liu, Guanfeng
    Zhao, Lei
    Liu, Yanchi
    Sheng, Victor S.
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 58 - 67
  • [36] Feature-Level Deeper Self-Attention Network With Contrastive Learning for Sequential Recommendation
    Hao, Yongjing
    Zhang, Tingting
    Zhao, Pengpeng
    Liu, Yanchi
    Sheng, Victor S.
    Xu, Jiajie
    Liu, Guanfeng
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 10112 - 10124
  • [37] Feature Interaction Dual Self-attention network for sequential recommendation
    Zhu, Yunfeng
    Yao, Shuchun
    Sun, Xun
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [38] Sequential recommendation based on multipair contrastive learning with informative augmentation
    Yin, Pei
    Zhao, Jun
    Ma, Zi-jie
    Tan, Xiao
    NEURAL COMPUTING & APPLICATIONS, 2023, 36 (17): : 9707 - 9721
  • [39] Periodicity May Be Emanative: Hierarchical Contrastive Learning for Sequential Recommendation
    Tian, Changxin
    Hu, Binbin
    Zhao, Wayne Xin
    Zhang, Zhiqiang
    Zhou, Jun
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2442 - 2451
  • [40] Graphical contrastive learning for multi-interest sequential recommendation
    Liang, Shunpan
    Kong, Qianjin
    Lei, Yu
    Li, Chen
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259