ON PRIMITIVE CONSTANT DIMENSION CODES AND A GEOMETRICAL SUNFLOWER BOUND

被引:4
|
作者
Barrolleta, Roland D. [1 ]
Suarez-Canedo, Emilio [1 ]
Storme, Leo [2 ]
Vandendriessche, Peter [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Engn Informacio & Comunicac, Edifici Q, E-08193 Barcelona, Spain
[2] Dept Math WE01, Krijgslaan 281,Bldg S25, B-9000 Ghent, Belgium
关键词
Subspace codes; constant intersection dimension codes; rank codes; finite geometry; Galois geometry; SUBSPACE; SETS;
D O I
10.3934/amc.2017055
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study subspace codes with constant intersection dimension (SCIDs). We investigate the largest possible dimension spanned by such a code that can yield non-sunflower codes, and classify the examples attaining equality in that bound as one of two infinite families. We also construct a new infinite family of primitive SCIDs.
引用
收藏
页码:757 / 765
页数:9
相关论文
共 50 条
  • [21] On the extendability of particular classes of constant dimension codes
    Nakic, Anamari
    Storme, Leo
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 79 (03) : 407 - 422
  • [22] Johnson type bounds on constant dimension codes
    Shu-Tao Xia
    Fang-Wei Fu
    Designs, Codes and Cryptography, 2009, 50 : 163 - 172
  • [23] New Lower Bounds for Constant Dimension Codes
    Silberstein, Natalia
    Trautmann, Anna-Lena
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 514 - +
  • [24] BILATERAL MULTILEVEL CONSTRUCTION OF CONSTANT DIMENSION CODES
    Yu, Shuhui
    Ji, Lijun
    Liu, Shuangqing
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 1165 - 1183
  • [25] Parallel Multilevel Constructions for Constant Dimension Codes
    Liu, Shuangqing
    Chang, Yanxun
    Feng, Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 6884 - 6897
  • [26] AN IMPROVEMENT OF THE GILBERT BOUND FOR CONSTANT WEIGHT CODES
    ERICSON, T
    ZINOVIEV, VA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (05) : 721 - 723
  • [27] Lower bound for ternary constant weight codes
    Linkoping Univ, Linkoping, Sweden
    IEEE Trans Inf Theory, 5 (1630-1632):
  • [28] An upper bound for binary constant weight codes
    Fu, FW
    Shen, SY
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 94 (02) : 197 - 203
  • [29] Lifted Codes with Construction of Echelon-Ferrers for Constant Dimension Codes
    Niu, Yongfeng
    Wang, Xuan
    MATHEMATICS, 2024, 12 (20)
  • [30] A lower bound for ternary constant weight codes
    Svanstrom, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (05) : 1630 - 1632