Intercomparison of efficiency transfer software for gamma-ray spectrometry

被引:106
|
作者
Lépy, MC [1 ]
Altzitzoglou, T
Arnold, D
Bronson, F
Noy, RC
Décombaz, M
De Corte, F
Edelmaier, R
Peraza, EH
Klemola, S
Korun, M
Kralik, M
Neder, H
Plagnard, J
Pommé, S
de Sanoit, J
Sima, O
Ugletveit, F
Van Velzen, L
Vidmar, T
机构
[1] CEA, BNM, Lab Natl Henri Becquerel, F-91191 Gif Sur Yvette, France
[2] EC JRC, Inst Reference Mat & Measurements, B-2440 Geel, Belgium
[3] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany
[4] Canberra, Middletown, CT 06457 USA
[5] Ctr Estudios Aplicados & Desarollo Nucl, Havana, Cuba
[6] CHB Ecublens, Ctr Univ, Inst Radiophys Appl, IRA OFMET, CH-1015 Lausanne, Switzerland
[7] State Univ Ghent, Inst Nucl Sci, Analyt Chem Lab, B-9000 Ghent, Belgium
[8] BEV, Grp Eichwesen, Metrol Serv, A-1163 Vienna, Austria
[9] Inst Super Ciencias & Tecnol Nucl, Havana, Cuba
[10] STUK, Radiat & Nucl Safety Author, FIN-00881 Helsinki, Finland
[11] Jozef Stefan Inst, Ljubljana 1000, Slovenia
[12] Czech Metrol Inst, Inspectorate Ionizing Radiat, CZ-10200 Prague 10, Czech Republic
[13] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany
[14] CEN SCK, B-2400 Mol, Belgium
[15] Univ Bucharest, Dept Phys, RO-76900 Bucharest, Romania
[16] Norwegian Radiat Protect Author, N-1345 Osteras, Norway
[17] NRG RE, NL-6800 ET Arnhem, Netherlands
关键词
efficiency; germanium spectrometer; Monte Carlo simulation; geometry transfer; intercomparison; gamma-ray spectrometry;
D O I
10.1016/S0969-8043(01)00101-4
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The EUROMET project 428 examines efficiency transfer results for Ge gamma-ray spectrometers when the efficiency is known for a reference point source geometry. For this, different methods are used, such as Monte Carlo simulation or semi-empirical computation. The exercise compares the application of these methods to the same selected experimental cases to determine the usage limitations versus the requested accuracy. For carefully examining these results and trying to derive information for improving the computation codes, this study was limited to a few simple cases. The first part concerns the simplest case of geometry transfer, i.e., using point sources for 3 source-to-detect or distances: 2, 5 and 20 cm; the second part deals with transfer from point source geometry to cylindrical geometry with three different matrices. The general conclusion is that the deviations between the computed results and the measured efficiencies are mostly within 10%, The quality of the results is rather inhomogeneous and shows that these codes cannot be used directly for metrological purposes. However, most of them are operational for routine measurements when efficiency uncertainties of 5-10% can be sufficient. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:493 / 503
页数:11
相关论文
共 50 条
  • [1] An in situ gamma-ray spectrometry intercomparison
    Shebell, P
    Faller, S
    Monetti, M
    Bronson, F
    Hagenauer, R
    Jarrell, CL
    Keefer, D
    Moos, JR
    Panzarino, N
    Reiman, RT
    Sparks, BJ
    Thisell, M
    HEALTH PHYSICS, 2003, 85 (06): : 662 - 677
  • [2] A preliminary intercomparison of gamma-ray spectrometry on building materials
    Anagnostakis, MJ
    Bolzan, C
    De Felice, P
    Fazio, A
    Grisanti, G
    Risica, S
    Turtiainen, T
    van der Graaf, E
    APPLIED RADIATION AND ISOTOPES, 2004, 61 (2-3) : 381 - 388
  • [3] Intercomparison and evaluation of several software for gamma-ray spectra
    Zhang, Xin-Jun
    Wang, Jun
    Wang, Shi-Lian
    Fan, Yuan-Qing
    Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2007, 27 (05): : 825 - 829
  • [4] Crystal rounding and the efficiency transfer method in gamma-ray spectrometry
    Vidmar, Tim
    Gasparro, Joel
    APPLIED RADIATION AND ISOTOPES, 2009, 67 (11) : 2057 - 2061
  • [5] Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry
    Lepy, M. -C.
    Altzitzoglou, T.
    Anagnostakis, M. J.
    Arnold, D.
    Capogni, M.
    Ceccatelli, A.
    De Felice, P.
    Dersch, R.
    Dryak, P.
    Fazio, A.
    Ferreux, L.
    Guardati, M.
    Han, J. B.
    Hurtado, S.
    Karfopoulos, K. L.
    Klemola, S.
    Kovar, P.
    Lee, K. B.
    Ocone, R.
    Ott, O.
    Sima, O.
    Sudar, S.
    Svec, A.
    Chau Van Tao
    Tran Thien Thanh
    Vidmar, T.
    APPLIED RADIATION AND ISOTOPES, 2010, 68 (7-8) : 1407 - 1412
  • [6] The 1995 IAEA intercomparison of gamma-ray spectrum analysis software
    Blaauw, M
    Fernandez, VO
    vanEspen, P
    Bernasconi, G
    Noy, RC
    Dung, HM
    Molla, NI
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 387 (03): : 416 - 432
  • [7] EFFTRAN - A Monte Carlo efficiency transfer code for gamma-ray spectrometry
    Vidmar, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 550 (03): : 603 - 608
  • [8] An intercomparison of Monte Carlo codes used in gamma-ray spectrometry
    Vidmar, T.
    Aubineau-Laniece, I.
    Anagnostakis, M. J.
    Arnold, D.
    Brettner-Messler, R.
    Budjas, D.
    Capogni, M.
    Dias, M. S.
    De Geer, L-E.
    Fazio, A.
    Gasparro, J.
    Hult, M.
    Hurtado, S.
    Vargas, M. Jurado
    Laubenstein, M.
    Lee, K. B.
    Lee, Y-K.
    Lepy, M-C.
    Maringer, F-J.
    Peyres, V. Medina
    Mille, M.
    Moralles, M.
    Nour, S.
    Plenteda, R.
    Montero, M. P. Rubio
    Sima, O.
    Tomei, C.
    Vidmar, G.
    APPLIED RADIATION AND ISOTOPES, 2008, 66 (6-7) : 764 - 768
  • [9] A gamma-ray spectrometry analysis software environment
    Lutter, G.
    Hult, M.
    Marissens, G.
    Stroh, H.
    Tzika, F.
    APPLIED RADIATION AND ISOTOPES, 2018, 134 : 200 - 204
  • [10] ICNUCSPEC: The ultimate software for gamma-ray spectrometry
    Blaauw, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2291 - U2291