Toric Sasaki-Einstein metrics on S2xS3

被引:134
|
作者
Martelli, D [1 ]
Sparks, J
机构
[1] CERN, Div Theory, Dept Phys, CH-1211 Geneva, Switzerland
[2] Harvard Univ, Dept Math, Cambridge, MA 02318 USA
[3] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
关键词
D O I
10.1016/j.physletb.2005.06.059
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that by taking a certain scaling limit of a Euclideanised form of the Plebanski-Demianski metrics one obtains a family of local toric Kahler-Einstein metrics. These can be used to construct local Sasaki-Einstein metrics in five dimensions which are generalisations of the Y-p,Y-q manifolds. In fact, we find that these metrics are diffeomorphic to those recently found by Cvetic, Lu, Page and Pope. We argue that the corresponding family of smooth Sasaki-Einstein manifolds all have topology S-2 X S-3. We conclude by setting up the equations describing the warped version of the Calabi-Yau cones, supporting (2, 1) three-form flux. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:208 / 212
页数:5
相关论文
共 50 条
  • [21] On irregular Sasaki-Einstein metrics in dimension 5
    Suss, H.
    SBORNIK MATHEMATICS, 2021, 212 (09) : 1261 - 1278
  • [22] Sasaki-Einstein and paraSasaki-Einstein metrics from (κ, μ)-structures
    Cappelletti-Montano, Beniamino
    Carriazo, Alfonso
    Martin-Molina, Veronica
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 73 : 20 - 36
  • [23] The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds
    Martelli, Dario
    Sparks, James
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) : 39 - 65
  • [24] Toric Sasaki–Einstein metrics with conical singularities
    Martin de Borbon
    Eveline Legendre
    Selecta Mathematica, 2022, 28
  • [25] Sasaki-Einstein metrics on a class of 7-manifolds
    Boyer, Charles P.
    Tonnesen-Friedman, Christina W.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 140 : 111 - 124
  • [26] Complete integrability of geodesic motion in Sasaki-Einstein toric Yp,q spaces
    Babalic, Elena Mirela
    Visinescu, Mihai
    MODERN PHYSICS LETTERS A, 2015, 30 (33)
  • [27] Free yang-mills theory versus toric Sasaki-Einstein manifolds
    Nishioka, Tatsuma
    Takayanagi, Tadashi
    PHYSICAL REVIEW D, 2007, 76 (04):
  • [28] SYMPLECTIC POTENTIAL, COMPLEX COORDINATES AND HIDDEN SYMMETRIES ON TORIC SASAKI-EINSTEIN SPACES
    Slesar, Vladimir
    Visinescu, Mihai
    Vilcu, Gabriel Eduard
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2015, 16 (04): : 505 - 512
  • [29] Notes on toric Sasaki-Einstein seven-manifolds and AdS4/CFT3
    Martelli, Dario
    Sparks, James
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (11):
  • [30] Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals
    Martelli, D
    Sparks, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) : 51 - 89