Toric Sasaki-Einstein metrics on S2xS3

被引:134
|
作者
Martelli, D [1 ]
Sparks, J
机构
[1] CERN, Div Theory, Dept Phys, CH-1211 Geneva, Switzerland
[2] Harvard Univ, Dept Math, Cambridge, MA 02318 USA
[3] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
关键词
D O I
10.1016/j.physletb.2005.06.059
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that by taking a certain scaling limit of a Euclideanised form of the Plebanski-Demianski metrics one obtains a family of local toric Kahler-Einstein metrics. These can be used to construct local Sasaki-Einstein metrics in five dimensions which are generalisations of the Y-p,Y-q manifolds. In fact, we find that these metrics are diffeomorphic to those recently found by Cvetic, Lu, Page and Pope. We argue that the corresponding family of smooth Sasaki-Einstein manifolds all have topology S-2 X S-3. We conclude by setting up the equations describing the warped version of the Calabi-Yau cones, supporting (2, 1) three-form flux. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:208 / 212
页数:5
相关论文
共 50 条
  • [1] Uniqueness and examples of compact toric Sasaki-Einstein metrics
    Cho, Koji
    Futaki, Akito
    Ono, Hajime
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (02) : 439 - 458
  • [2] Uniqueness and Examples of Compact Toric Sasaki-Einstein Metrics
    Koji Cho
    Akito Futaki
    Hajime Ono
    Communications in Mathematical Physics, 2008, 277 : 439 - 458
  • [3] Sasaki-Einstein Metrics on S2 x S3
    Imada, Mitsuhiro
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (02) : 367 - 373
  • [4] Sasaki-Einstein Metrics on S2 x S3
    Gauntlett, Jerome P.
    Martelli, Dario
    Sparks, James
    Waldram, Daniel
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 8 (04) : 711 - 734
  • [5] UNIQUENESS OF SASAKI-EINSTEIN METRICS
    Nitta, Yasufumi
    Sekiya, Ken'ichi
    TOHOKU MATHEMATICAL JOURNAL, 2012, 64 (03) : 453 - 468
  • [6] Some Examples of Toric Sasaki-Einstein Manifolds
    van Coevering, Craig
    RIEMANNIAN TOPOLOGY AND GEOMETRIC STRUCTURES ON MANIFOLDS, 2009, 271 : 185 - 232
  • [7] Killing forms and toric Sasaki-Einstein spaces
    Slesar, Vladimir
    Visinescu, Mihai
    Vilcu, Gabriel Eduard
    XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [8] Hidden symmetries on toric Sasaki-Einstein spaces
    Slesar, V.
    Visinescu, M.
    Vilcu, G. E.
    EPL, 2015, 110 (03)
  • [9] Toric Sasaki-Einstein manifolds and Heun equations
    Oota, T
    Yasui, Y
    NUCLEAR PHYSICS B, 2006, 742 : 275 - 294
  • [10] Obstructions to the existence of Sasaki-Einstein metrics
    Gauntlett, Jerome P.
    Martelli, Dario
    Sparks, James
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (03) : 803 - 827