Application of plant canopy analyzer for mature tea (Camellia sinensis L.) bush

被引:0
|
作者
Nakano, T [1 ]
机构
[1] Shizuoka Chuen Agr & For Off, Iwata 4388558, Japan
关键词
Camellia sinensis L; canopy structure; crown; LAI; plant canopy analyzer; stratified clip method; tea;
D O I
暂无
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
A non destructive method using Plant Canopy Analyzer (LAI-2000, LI-COR, Inc.) was applied to estimate a leaf area index (LAI) for mature tea (Camellia sinensis L.) bushes, The LAI estimated by PCA showed a positive correlation (n= 51, r= 0.951, p < 0.0001) with the orthodox stratified clip method using a leaf area meter. A bias was observed, however, with PCA, since an LAI value of 3 was noted with no leaf. The positive LAI observed in the absence of leaves suggests that the PCA method may sense a branch area as a leaf area. Thus the estimation of LAI using PCA does not seem appropriate. When the same methodology was applied for total weight of a bush, a better correlation was found with PCA (n= 51, r= 0.973, p < 0.0001) than LAI. Thus the PCA appears to be a method of choice for measuring the total weight of a tea bush.
引用
收藏
页码:419 / 423
页数:5
相关论文
共 50 条
  • [11] Insight into the fate of tolfenpyrad in tea plant (Camellia sinensis L.) from root uptake
    Wang, Zihan
    Wang, Xinru
    Li, Ziqiang
    Wang, Min
    Fan, Wenwen
    Zha, Chengmin
    Zhou, Li
    Zhang, Xinzhong
    Chen, Zongmao
    Luo, Fengjian
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 950
  • [12] MECHANISM OF PHOTOSYNTHESIS IN THE TEA PLANT (CAMELLIA-SINENSIS L)
    ROBERTS, GR
    KEYS, AJ
    JOURNAL OF EXPERIMENTAL BOTANY, 1978, 29 (113) : 1403 - 1407
  • [13] Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (Camellia sinensis L.)
    Tong, Mengmeng
    Gao, Wanjun
    Jiao, Weiting
    Zhou, Jie
    Li, Yeyun
    He, Lili
    Hou, Ruyan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2017, 65 (35) : 7638 - 7646
  • [14] Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.)
    Duan, Dechao
    Tong, Jianhao
    Xu, Qiao
    Dai, Luying
    Ye, Jien
    Wu, Hanxin
    Xu, Chen
    Shi, Jiyan
    ENVIRONMENTAL POLLUTION, 2020, 267
  • [15] Theanine transporters are involved in nitrogen deficiency response in tea plant (Camellia sinensis L.)
    Li, Fang
    Li, Huiping
    Dong, Chunxia
    Yang, Tianyuan
    Zhang, Shupei
    Bao, Shilai
    Wan, Xiaochun
    Zhang, Zhaoliang
    PLANT SIGNALING & BEHAVIOR, 2020, 15 (03)
  • [16] Effects of exogenous calcium on the drought response of the tea plant (Camellia sinensis (L.) Kuntze)
    Malyukova, Lyudmila S.
    Koninskaya, Natalia G.
    Orlov, Yuriy L.
    Samarina, Lidiia S.
    PEERJ, 2022, 10
  • [17] Metabolite profiling of tea (Camellia sinensis L.) leaves in winter
    Shen, Jiazhi
    Wang, Yu
    Chen, Changsong
    Ding, Zhaotang
    Hu, Jianhui
    Zheng, Chao
    Li, Yuchen
    SCIENTIA HORTICULTURAE, 2015, 192 : 1 - 9
  • [18] Novel Tea Cultivar, Cold- and Disease-tolerant Tea Plant (Camellia sinensis L.) 'Chamnok'
    Gi, Gwang-Yeon
    Yun, Chang-Young
    Kim, Byeong-Ho
    Choi, Jeong
    Kim, Young-Ok
    Oh, Bong-Yun
    Lee, Bo-Bae
    Park, Jang-Hyun
    HORTSCIENCE, 2017, 52 (09) : S323 - S324
  • [19] Correlation among Metabolic Changes in Tea Plant Camellia sinensis (L.) Shoots, Green Tea Quality and the Application of Cow Manure to Tea Plantation Soils
    Sun, Litao
    Fan, Kai
    Wang, Linlin
    Ma, Dexin
    Wang, Yu
    Kong, Xiaojun
    Li, Hongyan
    Ren, Yonglin
    Ding, Zhaotang
    MOLECULES, 2021, 26 (20):
  • [20] Tea constituents (Camellia sinensis L.) as antioxidants in lipid systems
    Gramza, A
    Korczak, J
    TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2005, 16 (08) : 351 - 358