On the Uniqueness of Isosceles Orthogonality in Normed Linear Spaces

被引:21
|
作者
Ji, Donghai [1 ]
Li, Jingying [1 ]
Wu, Senlin [1 ]
机构
[1] Harbin Univ Sci & Technol, Dept Appl Math, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Isosceles orthogonality; Minkowski plane; normed plane; uniqueness of isosceles orthogonality;
D O I
10.1007/s00025-010-0069-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Via studying the relation between isosceles orthogonality and the lengths of segments contained in the unit sphere, existing results on the uniqueness of isosceles orthogonality are improved.
引用
收藏
页码:157 / 162
页数:6
相关论文
共 50 条
  • [31] Local Approximate Symmetry of Birkhoff–James Orthogonality in Normed Linear Spaces
    Jacek Chmieliński
    Divya Khurana
    Debmalya Sain
    Results in Mathematics, 2021, 76
  • [32] OPERATORS REVERSING ORTHOGONALITY IN NORMED SPACES
    Chmielinski, Jacek
    ADVANCES IN OPERATOR THEORY, 2016, 1 (01): : 8 - 14
  • [33] On maps that preserve orthogonality in normed spaces
    Blanco, A.
    Turnsek, A.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 709 - 716
  • [34] VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES
    N.B.OKELO
    J.O.AGURE
    P.O.OLECHE
    Acta Mathematica Scientia, 2013, 33 (05) : 1387 - 1397
  • [35] VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES
    Okelo, N. B.
    Agure, J. O.
    Oleche, P. O.
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) : 1387 - 1397
  • [36] NUMERICAL RANGE AND ORTHOGONALITY IN NORMED SPACES
    Bachir, A.
    Segres, A.
    FILOMAT, 2009, 23 (01) : 21 - 41
  • [37] Orthogonality in smooth countably normed spaces
    Tawfeek, Sarah
    Faried, Nashat
    El-Sharkawy, H. A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [38] Orthogonality in smooth countably normed spaces
    Sarah Tawfeek
    Nashat Faried
    H. A. El-Sharkawy
    Journal of Inequalities and Applications, 2021
  • [39] On Uniqueness of New Orthogonality via 2-HH Norm in Normed Linear Space
    Ojha, Bhuwan Prasad
    Bajracharya, Prakash Muni
    Mishra, Vishnu Narayan
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [40] Local Approximate Symmetry of Birkhoff-James Orthogonality in Normed Linear Spaces
    Chmielinski, Jacek
    Khurana, Divya
    Sain, Debmalya
    RESULTS IN MATHEMATICS, 2021, 76 (03)