Ensembled Crossover based Evolutionary Algorithm for Single and Multi-objective Optimization

被引:3
|
作者
Sharma, Shreya [1 ]
Blank, Julian [2 ]
Deb, Kalyanmoy [3 ]
Panigrahi, Bijaya Ketan [4 ]
机构
[1] Indian Inst Technol Delhi, Dept Comp Sci & Engn, New Delhi, India
[2] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[4] Indian Inst Technol Delhi, Dept Elect Engn, New Delhi, India
来源
2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021) | 2021年
关键词
Crossover; Recombination; Ensemble-based algorithm; Evolutionary algorithm; NONDOMINATED SORTING APPROACH; DIFFERENTIAL EVOLUTION; PARAMETERS;
D O I
10.1109/CEC45853.2021.9504698
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A unique way evolutionary algorithms (EAs) are different from other search and optimization methods is their recombination operator. For real-parameter problems, it takes two or more high-performing population members and blends them to create one or more new solutions. Many real-parameter recombination operators have been proposed in the literature. Each operator involves at least a parameter that controls the extent of exploration (diversity) of the generated offspring population. It has been observed that different recombination operators and specific parameters produce the best performance for different problems. This fact imposes the user to use different operator and parameter combinations for every new problem. While an automated algorithm configuration method can be applied to find the best combination, in this paper, we propose an Ensembled Crossover based Evolutionary Algorithm (EnXEA), which considers a number of recombination operators simultaneously. Their parameter values and applies them with a probability updated adaptively in proportion to their success in creating better offspring solutions. Results on single-objective and multi-objective, constrained, and unconstrained problems indicate that EnXEA's performance is close to the best individual recombination operation for each problem. This alleviates the use of expensive parameter tuning either adaptively or manually for solving a new problem.
引用
收藏
页码:1439 / 1446
页数:8
相关论文
共 50 条
  • [21] Multimodal multi-objective optimization with multi-stage-based evolutionary algorithm
    Tianyong Wu
    Fei Ming
    Hao Zhang
    Qiying Yang
    Wenyin Gong
    Memetic Computing, 2023, 15 : 377 - 389
  • [22] Simplex Model Based Evolutionary Algorithm for Dynamic Multi-Objective Optimization
    Wei, Jingxuan
    Zhang, Mengjie
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 372 - +
  • [23] Development of a multi-objective optimization evolutionary algorithm based on educational systems
    Hossein Moradi
    Hossein Ebrahimpour-Komleh
    Applied Intelligence, 2018, 48 : 2954 - 2966
  • [24] Development of a multi-objective optimization evolutionary algorithm based on educational systems
    Moradi, Hossein
    Ebrahimpour-Komleh, Hossein
    APPLIED INTELLIGENCE, 2018, 48 (09) : 2954 - 2966
  • [25] An improved model-based evolutionary algorithm for multi-objective optimization
    Gholamnezhad, Pezhman
    Broumandnia, Ali
    Seydi, Vahid
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (10):
  • [26] A New Evolutionary Algorithm Based on Decomposition for Multi-objective Optimization Problems
    Dai, Cai
    Lei, Xiujuan
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 33 - 38
  • [27] A new orthogonal evolutionary algorithm based on decomposition for multi-objective optimization
    Dai, Cai
    Wang, Yuping
    Yue, Wei
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (10) : 1686 - 1698
  • [28] Portfolio optimization with an envelope-based multi-objective evolutionary algorithm
    Branke, J.
    Scheckenbach, B.
    Stein, M.
    Deb, K.
    Schmeck, H.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 199 (03) : 684 - 693
  • [29] Search space-based multi-objective optimization evolutionary algorithm
    Medhane, Darshan Vishwasrao
    Sangaiah, Arun Kumar
    COMPUTERS & ELECTRICAL ENGINEERING, 2017, 58 : 126 - 143
  • [30] A Preference Based Interactive Evolutionary Algorithm for Multi-objective Optimization: PIE
    Sindhya, Karthik
    Ruiz, Ana Belen
    Miettinen, Kaisa
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 212 - +