Randomized Quaternion QLP Decomposition for Low-Rank Approximation

被引:8
|
作者
Ren, Huan [1 ]
Ma, Ru-Ru [2 ]
Liu, Qiaohua [3 ]
Bai, Zheng-Jian [1 ,4 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 360015, Peoples R China
[2] Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Peoples R China
[3] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[4] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Quaternion data matrix; Low-rank approximation; Quaternion QLP decomposition; Randomized algorithm; SINGULAR-VALUE DECOMPOSITION; STRUCTURE-PRESERVING METHOD; LU DECOMPOSITION; ALGORITHM; MATRIX; REAL; QR;
D O I
10.1007/s10915-022-01917-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The low-rank approximation of a quaternion matrix has attracted growing attention in many applications including color image processing and signal processing. In this paper, based on quaternion normal distribution random sampling, we propose a randomized quaternion QLP decomposition algorithm for computing a low-rank approximation to a quaternion data matrix. For the theoretical analysis, we first present convergence results of the quaternion QLP decomposition, which provides slightly tighter upper bounds than the existing ones for the real QLP decomposition. Then, for the randomized quaternion QLP decomposition, the matrix approximation error and the singular value approximation error analyses are also established to show the proposed randomized algorithm can track the singular values of the quaternion data matrix with high probability. Finally, we present some numerical examples to illustrate the effectiveness and reliablity of the proposed algorithm.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Randomized Quaternion QLP Decomposition for Low-Rank Approximation
    Huan Ren
    Ru-Ru Ma
    Qiaohua Liu
    Zheng-Jian Bai
    Journal of Scientific Computing, 2022, 92
  • [2] Single-pass randomized QLP decomposition for low-rank approximation
    Ren, Huan
    Xiao, Guiyun
    Bai, Zheng-Jian
    CALCOLO, 2022, 59 (04)
  • [3] Single-pass randomized QLP decomposition for low-rank approximation
    Huan Ren
    Guiyun Xiao
    Zheng-Jian Bai
    Calcolo, 2022, 59
  • [4] Randomized Rank-Revealing QLP for Low-Rank Matrix Decomposition
    Kaloorazi, Maboud F.
    Liu, Kai
    Chen, Jie
    De Lamare, Rodrigo C.
    Rahardja, Susanto
    IEEE ACCESS, 2023, 11 : 63650 - 63666
  • [5] RANDOMIZED QUATERNION SINGULAR VALUE DECOMPOSITION FOR LOW-RANK MATRIX APPROXIMATION
    LIU, Q. I. A. O. H. U. A.
    LING, S. I. T. A. O.
    JIA, Z. H. I. G. A. N. G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A870 - A900
  • [6] Stewart's pivoted QLP decomposition for low-rank matrices
    Huckaby, DA
    Chan, TF
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (2-3) : 153 - 159
  • [7] LOW-RANK MATRIX APPROXIMATION BASED ON INTERMINGLED RANDOMIZED DECOMPOSITION
    Kaloorazi, Maboud F.
    Chen, Jie
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7475 - 7479
  • [8] Efficient quaternion CUR method for low-rank approximation to quaternion matrix
    Wu, Pengling
    Kou, Kit Ian
    Cai, Hongmin
    Yu, Zhaoyuan
    NUMERICAL ALGORITHMS, 2024,
  • [9] Multiscale Decomposition in Low-Rank Approximation
    Abdolali, Maryam
    Rahmati, Mohammad
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (07) : 1015 - 1019
  • [10] Low-Rank Quaternion Approximation for Color Image Processing
    Chen, Yongyong
    Xiao, Xiaolin
    Zhou, Yicong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1426 - 1439