LOW-RANK MATRIX APPROXIMATION BASED ON INTERMINGLED RANDOMIZED DECOMPOSITION

被引:0
|
作者
Kaloorazi, Maboud F. [1 ]
Chen, Jie [1 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, CIAIC, Xian, Shaanxi, Peoples R China
关键词
Matrix decomposition; randomized algorithms; low-rank approximation; image reconstruction; robust PCA; ALGORITHMS; QR;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This work introduces a novel matrix decomposition method termed Intermingled Randomized Singular Value Decomposition (InR-SVD), along with an InR-SVD variant powered by the power iteration scheme. InR-SVD computes a low-rank approximation to an input matrix by means of random sampling techniques. Given a large and dense m x n matrix, InR-SVD constructs a low-rank approximation with a few passes over the data in O(mnk) floating-point operations, where k is much smaller than m and n. Furthermore, InR-SVD can exploit modern computational platforms and thereby being optimized for maximum efficiency. InR-SVD is applied to synthetic data as well as real data in image reconstruction and robust principal component analysis problems. Simulations show that InR-SVD outperforms existing approaches.
引用
收藏
页码:7475 / 7479
页数:5
相关论文
共 50 条
  • [1] RANDOMIZED QUATERNION SINGULAR VALUE DECOMPOSITION FOR LOW-RANK MATRIX APPROXIMATION
    LIU, Q. I. A. O. H. U. A.
    LING, S. I. T. A. O.
    JIA, Z. H. I. G. A. N. G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A870 - A900
  • [2] Efficient Low-Rank Approximation of Matrices Based on Randomized Pivoted Decomposition
    Kaloorazi, Maboud F.
    Chen, Jie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 3575 - 3589
  • [3] Randomized Quaternion QLP Decomposition for Low-Rank Approximation
    Ren, Huan
    Ma, Ru-Ru
    Liu, Qiaohua
    Bai, Zheng-Jian
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [4] Randomized Quaternion QLP Decomposition for Low-Rank Approximation
    Huan Ren
    Ru-Ru Ma
    Qiaohua Liu
    Zheng-Jian Bai
    Journal of Scientific Computing, 2022, 92
  • [5] RANDOMIZED LOW-RANK APPROXIMATION OF MONOTONE MATRIX FUNCTIONS
    Persson, David
    Kressner, Daniel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (02) : 894 - 918
  • [6] Low-Rank and Sparse Matrix Recovery Based on a Randomized Rank-Revealing Decomposition
    Kaloorazi, Maboud F.
    de Lamare, Rodrigo C.
    2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
  • [7] Randomized Rank-Revealing QLP for Low-Rank Matrix Decomposition
    Kaloorazi, Maboud F.
    Liu, Kai
    Chen, Jie
    De Lamare, Rodrigo C.
    Rahardja, Susanto
    IEEE ACCESS, 2023, 11 : 63650 - 63666
  • [8] Multiscale Decomposition in Low-Rank Approximation
    Abdolali, Maryam
    Rahmati, Mohammad
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (07) : 1015 - 1019
  • [9] Enhanced Low-Rank Matrix Approximation
    Parekh, Ankit
    Selesnick, Ivan W.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (04) : 493 - 497
  • [10] Modifiable low-rank approximation to a matrix
    Barlow, Jesse L.
    Erbay, Hasan
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (10) : 833 - 860