Construction of certain new families related to q-Fubini polynomials

被引:2
|
作者
Khan, Subuhi [1 ]
Haneef, Mehnaz [1 ]
Riyasat, Mumtaz [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
[2] Aligarh Muslim Univ, Fac Engn & Technol, Dept Appl Math, Aligarh, Uttar Pradesh, India
关键词
q-Fubini polynomials; q-Bessel functions; q-Bessel polynomials; NUMBERS;
D O I
10.1515/gmj-2022-2170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fubini polynomials play an important role in the theory and applications of mathematics. These polynomials appear in combinatorial mathematics, thus attracted an appreciable amount of interest of number theory and combinatorics experts. In this paper, the q-Fubini polynomials are combined with q-Bessel functions in order to introduce q-Fubini-Bessel functions. Certain results for these q-hybrid functions are derived. Their relations with the classical Fubini polynomials and Bessel functions are established and q-Fubini-Bessel polynomials are explored. The graphical representations of q-Fubini polynomials and q-Fubini-Bessel polynomials for particular values of indices and variables are also considered.
引用
收藏
页码:725 / 739
页数:15
相关论文
共 50 条
  • [21] CHROMATIC POLYNOMIALS OF CERTAIN FAMILIES OF DENDRIMER NANOSTARS
    Arif, Nabeel E.
    Hasni, Roslan
    Alikhani, Saeid
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2011, 6 (04) : 1551 - 1556
  • [22] CONGRUENCE PROPERTIES OF CERTAIN CLASSICAL FAMILIES OF POLYNOMIALS
    ZUBER, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (08): : 869 - 872
  • [23] Computing Galois groups of certain families of polynomials
    Shokri, Khosro Monsef
    Shaffaf, Jafar
    Taleb, Reza
    ACTA ARITHMETICA, 2018, 185 (04) : 357 - 365
  • [24] New families of generating functions for certain class of three-variable polynomials
    Kaanoglu, Cem
    Ozarslan, Mehmet Ali
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 836 - 842
  • [25] A New Approach to q-Bernoulli Numbers and q-Bernoulli Polynomials Related to q-Bernstein Polynomials
    Acikgoz, Mehmet
    Erdal, Dilek
    Araci, Serkan
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [26] New Proof of the Property of Stirling Number Based on Fubini Polynomials
    Wang, Li
    Liu, Xiaoge
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [27] On q-Sumudu Transforms of Certain q-Polynomials
    Albayrak, Durmus
    Purohit, Sunil Dutt
    Ucar, Faruk
    FILOMAT, 2013, 27 (02) : 411 - 427
  • [28] On the (p, q)-Chebyshev Polynomials and Related Polynomials
    Kizilates, Can
    Tuglu, Naim
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (02)
  • [29] A CERTAIN CLASS OF Q-BESSEL POLYNOMIALS
    EXTON, H
    SRIVASTAVA, HM
    MATHEMATICAL AND COMPUTER MODELLING, 1994, 19 (02) : 55 - 60