Visual Attention Based Motion Object Detection and Trajectory Tracking

被引:0
|
作者
Guo, Wen [1 ,2 ]
Xu, Changsheng [1 ]
Ma, Songde [1 ]
Xu, Min [3 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[2] Shandong Inst Business & Technol, Dept Elect Engn, Yantai, Peoples R China
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW, Australia
基金
中国国家自然科学基金;
关键词
Visual attention; object detection; trajectory tracking;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A motion trajectory tracking method using a novel visual attention model and kernel density estimation is proposed in this paper. As a crucial step, moving objects detection is based on visual attention. The visual attention model is built by combination of the static and motion feature attention map and a Karhunen-Loeve transform (KLT) distribution map. Since the visual attention analysis is conducted on object level instead of pixel level, the proposed method can detect any kinds of motion objects provided saliency without the affection of objects appearance and surrounding circumstance. After locating the region of moving object, the kernel density is estimated for trajectory tracking. The experimental results show that the proposed method is promising for moving objects detection and trajectory tracking.
引用
收藏
页码:462 / +
页数:2
相关论文
共 50 条
  • [31] Target Tracking for Moving Robots Using Object-based Visual Attention
    Yu, Yuanlong
    Mann, George K. I.
    Gosine, Raymond G.
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,
  • [32] Spermatozoa motion detection and trajectory tracking algorithm based on orthogonal search
    Murguía, MIC
    Martinez, AV
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXII, 1999, 3808 : 415 - 422
  • [33] Deformable Siamese Attention Networks for Visual Object Tracking
    Yu, Yuechen
    Xiong, Yilei
    Huang, Weilin
    Scott, Matthew R.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6727 - 6736
  • [34] Visual Object Tracking by Hierarchical Attention Siamese Network
    Shen, Jianbing
    Tang, Xin
    Dong, Xingping
    Shao, Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3068 - 3080
  • [35] Motion-seeded object-based attention for dynamic visual imagery
    Huber, David J.
    Khosla, Deepak
    Kim, Kyungnam
    AUTOMATIC TARGET RECOGNITION XXVII, 2017, 10202
  • [36] Object Tracking Based on Channel Attention
    He, Zhiquan
    Chen, Xuejun
    IEEE ACCESS, 2020, 8 : 17824 - 17832
  • [37] ROBUST TRAJECTORY TRACKING WITH OPTIMAL VISUAL SERVOING ON A DEFORMABLE OBJECT
    Derrar, Yasser
    Saidi, Farah
    Malti, Abed
    International Journal of Robotics and Automation, 2023, 38 (03): : 180 - 193
  • [38] Trajectory Guided Robust Visual Object Tracking With Selective Remedy
    Wang, Han
    Liu, Jing
    Su, Yuting
    Yang, Xiaokang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (07) : 3425 - 3440
  • [39] Integrated video object tracking with applications in trajectory-based event detection
    Cheng, Hsu-Yung
    Hwang, Jenq-Neng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2011, 22 (07) : 673 - 685
  • [40] Ship Object Detection of Remote Sensing Image Based on Visual Attention
    Dong, Yuxin
    Chen, Fukun
    Han, Shuang
    Liu, Hao
    REMOTE SENSING, 2021, 13 (16)