Developing Triboengineering Composites Based on Ultra-High Molecular Weight Polyethylene

被引:3
|
作者
Kolesova, E. S. [1 ]
Gogoleva, O., V [1 ]
Petrova, P. N. [1 ]
Markova, M. A. [1 ]
Chirikov, A. A. [1 ]
机构
[1] Russian Acad Sci, Inst Oil & Gas Problems, Siberian Branch, Yakutsk 677007, Russia
基金
俄罗斯基础研究基金会;
关键词
wear resistance; friction coefficient; polymer composite materials; ultra-high molecular weight polyethylene; creep; carbon fibers; physics and mechanical properties;
D O I
10.1134/S2075113321040249
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of carbon fibers (CF) of the Belum brand is explored from the standpoint of influencing the performance parameters and the structure of polymer composite materials (PCM) based on ultra-high molecular weight polyethylene (UHMWPE). It is established that composites having CF content in the amount of wt % exhibit the optimum set of properties. The wear resistance increases by a factor of 3.3, while the deformation and strength characteristics of the material remain at the level of unfilled UHMWPE. It is found that the creep of PCM having composition UHMWPE + 5 wt % Belum is two times less than that of the initial polymer. We also compared the physical and mechanical properties of material developed having unfilled UHMWPE and modified polytetrafluoroethylene (PTFE). It is shown that the creep of UHMWPE is 1.5 times less than the creep of PTFE. The creep in the composite based on UHMWPE is 13 times less than the creep of the composite based on PTFE.
引用
收藏
页码:885 / 888
页数:4
相关论文
共 50 条
  • [31] Synthesis and properties of composites of ultra-high molecular weight polyethylene with carbon fibres or fibre monocrystals
    Atanasov, Atanas
    Koleva, Dimitrina
    POLYMERS & POLYMER COMPOSITES, 2006, 14 (04): : 413 - 420
  • [32] Shape Memory Behavior of Ultra-High Molecular Weight Polyethylene
    Kaloshkin, Sergey
    Maksimkin, Aleksey
    Kaloshkina, Maria
    Zadorozhnyy, Mihail
    Churyukanova, Margarita
    MULTIFUNCTIONAL POLYMER-BASED MATERIALS, 2012, 1403 : 91 - 97
  • [33] Ultra-high molecular weight polyethylene with hybrid porous structure
    Lermontov, Sergey A.
    Maksimkin, Aleksey V.
    Sipyagina, Nataliya A.
    Malkova, Alena N.
    Kolesnikov, Evgeniy A.
    Zadorozhnyy, Mikhail Yu
    Straumal, Elena A.
    Dayyoub, Tarek
    POLYMER, 2020, 202
  • [34] Controlling nascent nanostructure of ultra-high molecular weight polyethylene
    Ailianou, Artemis
    Kornfield, Julia A.
    Forte, Giuseppe
    Ronca, Sara
    Rastogi, Sanjay
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [35] The breaking strength of ultra-high molecular weight polyethylene fibers
    Wang, J
    Smith, KJ
    POLYMER, 1999, 40 (26) : 7261 - 7274
  • [36] The breaking strength of ultra-high molecular weight polyethylene fibers
    Department of Chemistry, Coll. Environ. Sci. Forest., Stt. U., Syracuse, NY 13210, United States
    Polymer, 26 (7261-7274):
  • [37] Fatigue crack propagation of ultra-high molecular weight polyethylene
    Suyitno
    Pujilaksono, Lazuardi
    2017 7TH INTERNATIONAL ANNUAL ENGINEERING SEMINAR (INAES), 2017, : 130 - 134
  • [38] WEAR OF HIGHLY CRYSTALLINE ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE
    Van Citters, Douglas W.
    Levack, Ashley E.
    Kennedy, Francis E.
    PROCEEDINGS OF THE STLE/ASME INTERNATIONAL JOINT TRIBOLOGY CONFERENCE 2008, 2009, : 135 - 137
  • [39] The effects of ion bombardment of ultra-high molecular weight polyethylene
    Turos, A.
    Abdul-Kader, A. M.
    Grambole, D.
    Jagielski, J.
    Piatkowska, A.
    Madi, N. K.
    Al-Maadeed, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 249 (1-2 SPEC. ISS.): : 660 - 664
  • [40] Tribological study of porous ultra-high molecular weight polyethylene
    College of Mechanical and Material Engineering, China Three Gorges University, Yichang 443002, China
    不详
    Mocaxue Xuebao, 2007, 6 (539-543):