Human Spinal Column Diagnostic Parameter Identification Using Geometrical Model of the Vertebral Body

被引:1
|
作者
Bazso, Sandor [1 ]
Viola, Arpad [2 ,3 ,4 ]
Benyo, Balazs Istvan [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Control Engn & Informat Technol, Budapest, Hungary
[2] Semmelweis Univ, Dept Neurotraumatol, Budapest, Hungary
[3] Peterfy Hosp, Budapest, Hungary
[4] Jeno Manninger Natl Inst Traumatol, Budapest, Hungary
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 15期
基金
欧盟地平线“2020”;
关键词
Geometric modelling; symmetry plane definition of human spinal column; principal component analysis; vertebral body model; automated angle measurement; COBB ANGLE;
D O I
10.1016/j.ifacol.2021.10.298
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A geometric model and related methods to easily define patient specific vertebral body models have been introduced in our previous studies. This paper proposes an angle measurement method that can be fully automated after the definition of the patient specific vertebral body model. A Principal Component Analysis based algorithm allowing the quick identification of the symmetry plane of the human spline is also developed and described. The clinical dataset used to analyse and validate the models and methods introduced consists of 39 patients' lumbar section of the spinal column with 195 vertebrae. In terms of angle measurement the proposed geometric model and the measurement method is proven to be accurate enough for clinical diagnostics, the average mean value of the measurement error 0.15 degrees and 0.75 degrees comparing the measurements to the two reference datasets. The average standard deviation of the error was around 2.50 degrees that is almost the same as the average standard deviation of the two reference datasets (2.34 degrees). Copyright (C) 2021 The Authors.
引用
收藏
页码:454 / 459
页数:6
相关论文
共 50 条
  • [31] Aeroelastic model design using parameter identification
    U.S. Air Force Wright Lab, Wright-Patterson Air Force Base, United States
    J Aircr, 1 (198-202):
  • [32] Bayesian approach for restoring force model parameter identification of reinforced concrete column
    Liu, Pei
    Yuan, Quan
    Wei, Qingchao
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41 (09): : 72 - 75
  • [33] Vertebral body segmentation using a probabilistic and universal shape model
    Aslan, Melih S.
    Shalaby, Ahmed
    Farag, Aly A.
    IET COMPUTER VISION, 2015, 9 (02) : 234 - 250
  • [34] USING AN INFORMATIONAL ENTROPY-BASED METRIC AS A DIAGNOSTIC OF FLOW DURATION TO DRIVE MODEL PARAMETER IDENTIFICATION
    Pechlivanidis, I. G.
    Jackson, B. M.
    Mcmillan, H. K.
    Gupta, H. V.
    GLOBAL NEST JOURNAL, 2012, 14 (03): : 325 - 334
  • [35] Model identification and parameter estimation of lithium ion batteries for diagnostic purposes
    Pozna, Anna I.
    Magyar, Attila
    Hangos, Katalin M.
    2017 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS (EE), 2017,
  • [36] Human Identification Using Human Body Features Extraction
    Khuangga, Martino C.
    Widyantoro, Dwi H.
    2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2018, : 397 - 402
  • [37] Dynamic manipulation of a string using a manipulator - Parameter identification and control based on a rigid body link model
    Hashimoto, M
    Ichikawa, T
    Inui, S
    Horiba, Y
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 4815 - 4820
  • [38] Standoff Human Identification Using Body Shape
    Matzner, Shari
    Heredia-Langner, Alejandro
    Amidan, Brett
    Boettcher, Evelyn J.
    Lochtefeld, Darrell
    Webb, Timothy
    2015 IEEE INTERNATIONAL SYMPOSIUM ON TECHNOLOGIES FOR HOMELAND SECURITY (HST), 2015,
  • [39] Using genetic algorithm for magnitude model parameter identification
    Tan, Bin
    Zhou, Haiyun
    Zhang, Jihua
    Tan, Bitao
    Tang, Litie
    Guo, Shibo
    Journal of Information and Computational Science, 2007, 4 (04): : 1105 - 1112
  • [40] Using State Estimation for Parameter and Model Error Identification
    Hwang, M. Davis
    Brewer, Brian
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,