Super J-holomorphic curves: construction of the moduli space

被引:0
|
作者
Kessler, Enno [1 ]
Sheshmani, Artan [1 ,2 ,3 ]
Yau, Shing-Tung [1 ,4 ]
机构
[1] Harvard Univ, Ctr Math Sci & Applicat, 20 Garden St, Cambridge, MA 02138 USA
[2] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
[3] Natl Res Univ Higher Sch Econ, Lab Mirror Symmetry, NRU HSE, 6 Usacheva St, Moscow 119048, Russia
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
RIEMANN SURFACES; STACKS; MAPS;
D O I
10.1007/s00208-021-02260-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a super Riemann surface with holomorphic distribution D and N a symplectic manifold with compatible almost complex structure J. We call a map Phi : M -> N a super J-holomorphic curve if its differential maps the almost complex structure on D to J. Such a super J-holomorphic curve is a critical point for the superconformal action and satisfies a super differential equation of first order. Using component fields of this super differential equation and a transversality argument we construct the moduli space of super J-holomorphic curves as a smooth subsupermanifold of the space of maps M -> N.
引用
收藏
页码:1391 / 1449
页数:59
相关论文
共 50 条