Determination of the 3D Navier-Stokes equations with damping

被引:3
|
作者
Shi, Wei [1 ]
Yang, Xinguang [1 ]
Yan, Xingjie [2 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] China Univ Min & Technol, Dept Math, Xuzhou 221008, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2022年 / 30卷 / 10期
关键词
determination; Navier-Stokes equation; damping; GLOBAL ATTRACTORS; WEAK SOLUTIONS;
D O I
10.3934/era.2022197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned the determination of trajectories for the three-dimensional NavierStokes equations with nonlinear damping subject to periodic boundary condition. By using the energy estimate of Galerkin approximated equation, the finite number of determining modes and asymptotic determined functionals have been shown via the Grashof numbers for the non-autonomous and autonomous damped Navier-Stokes fluid flow respectively.
引用
收藏
页码:3872 / 3886
页数:15
相关论文
共 50 条
  • [31] Exact Solution of 3D Navier-Stokes Equations
    Koptev, Alexander, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (03): : 306 - 313
  • [32] REGULARITY OF 3D AXISYMMETRIC NAVIER-STOKES EQUATIONS
    Chen, Hui
    Fang, Daoyuan
    Zhang, Ting
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (04) : 1923 - 1939
  • [33] On the 3D Navier-Stokes equations with regularity in pressure
    Liu, Qiao
    Dai, Guowei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 497 - 507
  • [34] Determining modes for the 3D Navier-Stokes equations
    Cheskidov, Alexey
    Dai, Mimi
    Kavlie, Landon
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 374 : 1 - 9
  • [35] On global attractors of the 3D Navier-Stokes equations
    Cheskidov, A.
    Foias, C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (02) : 714 - 754
  • [36] Robustness of 3D Navier-Stokes System with Increasing Damping
    Cao, Jie
    Su, Keqin
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [37] Long time decay of solutions to the 3D incompressible Navier-Stokes equations with nonlinear damping
    Li, Hongmin
    Xiao, Yuelong
    Zhao, Zhong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) : 5176 - 5186
  • [38] Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term
    Jiang, Zaihong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 5002 - 5009
  • [39] Gromov-Hausdorff stability of global attractors for the 3D Navier-Stokes equations with damping
    Tao, Zhengwang
    Yang, Xin-Guang
    Miranville, Alain
    Li, Desheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):
  • [40] Attractors of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations with damping
    Yue, Gaocheng
    Wang, Jintao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (03) : 434 - 452