Green Techniques for Rapid Fabrication of Unprecedentedly High-Performance PEO Membranes for CO2 Capture

被引:25
|
作者
Sun, Wei-Shi [1 ]
Yin, Ming-Jie [1 ]
Zhang, Wen-Hai [1 ]
Li, Shuo [1 ]
Wang, Naixin [1 ]
An, Quan-Fu [1 ]
机构
[1] Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Environm & Chem Engn, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; capture; gas separation membranes; PEO membranes; photo-cross-linking; membrane microstructures; CO2/N-2; separation; CARBON-DIOXIDE CAPTURE; POLY(ETHYLENE OXIDE); GAS-TRANSPORT; SEPARATION; POLYMERS; NETWORKS; PLANT; PERMEABILITY; HYDROGEL; TRIALS;
D O I
10.1021/acssuschemeng.1c02308
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Excessive CO2 emissions arising from fossil energy utilization pose severe threats to the environment, climate, and biological species. To this end, high-efficiency separation membranes have been developed to mitigate emerging challenges. Bisphenol A ethoxylate diacrylate (BPA) and poly(ethylene glycol) methyl ether acrylate (PEGMEA) were UV-cross-linked in the presence of low molecular weight poly(ethylene glycol) dimethyl ether (PEGDME) to prepare high-performance CO2 capture membranes in a green way. During the entire membrane fabrication process, no additional solvent was involved and no waste of membrane materials occurred, resulting in a green process. The such-prepared membrane presents an outstanding CO2 permeability of 4883 Barrer, a new record for poly(ethylene oxide) membranes, with a high CO2/N-2 ideal selectivity of 43 due to the cooperative contribution of BPA and PEGDME. The unprecedented separation performance of our manufactured membrane is even higher than that of the 2019 CO2/N-2 upper bound. Considering the rapid, cost-effective, and green fabrication process, our membrane potentially offers a dramatic advantage in alleviating the current greenhouse gas issue and shows great promise for practical applications.
引用
收藏
页码:10167 / 10175
页数:9
相关论文
共 50 条
  • [31] High performance polymer membranes for CO2 separation
    Kim, Seungju
    Lee, Young Moo
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2013, 2 (02) : 238 - 244
  • [32] Porous Carbon Derived from Poplar Catkins and Its High-performance CO2 Capture
    Li, Chongyang
    Tian, Shujian
    Song, Xiaoyong
    Zou, Bing
    Chen, Zhiquan
    Zhang, Zhen
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2023, 38 (04): : 789 - 795
  • [33] Porous Carbon Derived from Poplar Catkins and Its High-performance CO2 Capture
    李重阳
    TIAN Shujian
    宋小勇
    ZOU Bing
    陈志权
    ZHANG Zhen
    JournalofWuhanUniversityofTechnology(MaterialsScience), 2023, 38 (04) : 789 - 795
  • [34] Solar thermal swing adsorption on porous carbon monoliths for high-performance CO2 capture
    Wu, Zheng
    Du, Xing-Hao
    Zhang, Qian-Feng
    Stromme, Maria
    Xu, Chao
    NANO RESEARCH, 2023, 16 (07) : 10617 - 10625
  • [35] Porous Carbon Derived from Poplar Catkins and Its High-performance CO2 Capture
    Chongyang Li
    Shujian Tian
    Xiaoyong Song
    Bing Zou
    Zhiquan Chen
    Zhen Zhang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2023, 38 : 789 - 795
  • [36] Solar thermal swing adsorption on porous carbon monoliths for high-performance CO2 capture
    Zheng Wu
    Xing-Hao Du
    Qian-Feng Zhang
    Maria Strømme
    Chao Xu
    Nano Research, 2023, 16 : 10617 - 10625
  • [37] Novel Covalent Triazine Framework for High-Performance CO2 Capture and Alkyne Carboxylation Reaction
    Dang, Qin-Qin
    Liu, Chun-Yan
    Wang, Xiao-Min
    Zhang, Xian-Ming
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (33) : 27972 - 27978
  • [38] Polymeric membranes for CO2 separation and capture
    Han, Yang
    Ho, W. S. Winston
    JOURNAL OF MEMBRANE SCIENCE, 2021, 628
  • [39] High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA-co-POEM comb-like copolymer for CO2 capture
    Kim, Na Un
    Park, Byeong Ju
    Lee, Jae Hun
    Kim, Jong Hak
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (24) : 14723 - 14731
  • [40] Network Structure Engineering of Organosilica Membranes for Enhanced CO2 Capture Performance
    Jiang, Qiwei
    Guo, Meng
    MEMBRANES, 2022, 12 (05)