One-dimensional hydrogen atom in quantum phase-space representation: rigorous solutions

被引:20
|
作者
Li, QS [1 ]
Lu, J
机构
[1] Beijing Inst Technol, Sch Chem Engn & Mat Sci, Beijing 100081, Peoples R China
[2] Jilin Univ, Natl Key Lab Theoret & Computat Chem, Changchun 130023, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/S0009-2614(01)00081-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rigorous solutions of the Schrodinger equations for the one-dimensional hydrogen atom are solved within the framework of the quantum phase-space representation established by Torres-Vega and Frederick. The eigenfunctions in position and momentum spaces can be obtained through the 'Fourier-like' projection transformation from the phase-space eigenfunctions. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:118 / 122
页数:5
相关论文
共 50 条
  • [31] The one-dimensional hydrogen atom revisited
    Palma, Guillermo
    Raff, Ulrich
    CANADIAN JOURNAL OF PHYSICS, 2006, 84 (09) : 787 - 800
  • [32] ONE-DIMENSIONAL HYDROGEN-ATOM
    GOSTEV, VB
    PEREZFERNANDEZ, VK
    FRENKIN, AR
    CHIZHOV, GA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1989, 30 (04): : 22 - 25
  • [33] ONE-DIMENSIONAL HYDROGEN-ATOM
    GOMES, JF
    ZIMERMAN, AH
    AMERICAN JOURNAL OF PHYSICS, 1980, 48 (07) : 579 - 580
  • [34] Quantum one-dimensional Coulomb atom
    Dziubak, Tomasz
    Matulewski, Jacek
    OPTICS COMMUNICATIONS, 2013, 290 : 92 - 94
  • [35] Microwave quantum optics with an artificial atom in one-dimensional open space
    Hoi, Io-Chun
    Wilson, C. M.
    Johansson, Goran
    Lindkvist, Joel
    Peropadre, Borja
    Palomaki, Tauno
    Delsing, Per
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [37] Wigner phase-space distribution function for the hydrogen atom
    Nouri, S
    PHYSICAL REVIEW A, 1998, 57 (03): : 1526 - 1528
  • [38] ONE-DIMENSIONAL POTENTIALS IN THE PHASE-SPACE FORMALISM OF WEYL-WIGNER-MOYAL
    CHETOUANI, L
    HAMMANN, TF
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1986, 92 (01): : 106 - 120
  • [39] Phase-space description of the coherent state dynamics in a small one-dimensional system
    Spisak, Bartlomiej J.
    Kaczor, Urszula
    Klimas, Boguslaw
    Szydlowski, Dominik
    Woloszyn, Maciej
    OPEN PHYSICS, 2016, 14 (01): : 354 - 359
  • [40] Hamiltonian reductions of the one-dimensional Vlasov equation using phase-space moments
    Chandre, C.
    Perin, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)