MDCN: Multi-Scale Dense Cross Network for Image Super-Resolution

被引:78
|
作者
Li, Juncheng [1 ,2 ]
Fang, Faming [1 ,2 ]
Li, Jiaqian [1 ,2 ]
Mei, Kangfu [3 ]
Zhang, Guixu [1 ,2 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200062, Peoples R China
[2] East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200062, Peoples R China
[3] Chinese Univ Hong Kong Shenzhen, Dept Math, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image reconstruction; Adaptation models; Correlation; Image resolution; Computational modeling; Task analysis; Single image super-resolution; multi-scale; feature distillation; dynamic reconstruction; INTERPOLATION;
D O I
10.1109/TCSVT.2020.3027732
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional neural networks have been proven to be of great benefit for single-image super-resolution (SISR). However, previous works do not make full use of multi-scale features and ignore the inter-scale correlation between different upsampling factors, resulting in sub-optimal performance. Instead of blindly increasing the depth of the network, we are committed to mining image features and learning the inter-scale correlation between different upsampling factors. To achieve this, we propose a Multi-scale Dense Cross Network (MDCN), which achieves great performance with fewer parameters and less execution time. MDCN consists of multi-scale dense cross blocks (MDCBs), hierarchical feature distillation block (HFDB), and dynamic reconstruction block (DRB). Among them, MDCB aims to detect multi-scale features and maximize the use of image features flow at different scales, HFDB focuses on adaptively recalibrate channel-wise feature responses to achieve feature distillation, and DRB attempts to reconstruct SR images with different upsampling factors in a single model. It is worth noting that all these modules can run independently. It means that these modules can be selectively plugged into any CNN model to improve model performance. Extensive experiments show that MDCN achieves competitive results in SISR, especially in the reconstruction task with multiple upsampling factors. The code is provided at https://github.com/MIVRC/MDCN-PyTorch.
引用
收藏
页码:2547 / 2561
页数:15
相关论文
共 50 条
  • [31] A lightweight multi-scale residual network for single image super-resolution
    Chen, Xiaole
    Yang, Ruifeng
    Guo, Chenxia
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (07) : 1793 - 1801
  • [32] A lightweight multi-scale channel attention network for image super-resolution
    Li, Wenbin
    Li, Juefei
    Li, Jinxin
    Huang, Zhiyong
    Zhou, Dengwen
    NEUROCOMPUTING, 2021, 456 : 327 - 337
  • [33] Multi-scale skip-connection network for image super-resolution
    Liu, Jing
    Ge, Jianhui
    Xue, Yuxin
    He, Wenjuan
    Sun, Qindong
    Li, Shancang
    MULTIMEDIA SYSTEMS, 2021, 27 (04) : 821 - 836
  • [34] Multi-Scale Feature Mapping Network for Hyperspectral Image Super-Resolution
    Zhang, Jing
    Shao, Minhao
    Wan, Zekang
    Li, Yunsong
    REMOTE SENSING, 2021, 13 (20)
  • [35] Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
    Zhang, Min
    Wang, Huibin
    Zhang, Zhen
    Chen, Zhe
    Shen, Jie
    MICROMACHINES, 2022, 13 (01)
  • [36] Image super-resolution via enhanced multi-scale residual network
    Wang, MengJie
    Yang, Xiaomin
    Anisetti, Marco
    Zhang, Rongzhu
    Albertini, Marcelo Keese
    Liu, Kai
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2021, 152 : 57 - 66
  • [37] Multi-scale feature feedback network for single image super-resolution
    Zhang, Wenbo
    Wu, Zhenhui
    Hou, Yandong
    Chen, Zhengquan
    He, Wenqiang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 1141 - 1146
  • [38] Multi-scale feature selection network for lightweight image super-resolution
    Li, Minghong
    Zhao, Yuqian
    Zhang, Fan
    Luo, Biao
    Yang, Chunhua
    Gui, Weihua
    Chang, Kan
    NEURAL NETWORKS, 2024, 169 : 352 - 364
  • [39] An image super-resolution network based on multi-scale convolution fusion
    Xin Yang
    Yitian Zhu
    Yingqing Guo
    Dake Zhou
    The Visual Computer, 2022, 38 : 4307 - 4317
  • [40] A lightweight multi-scale residual network for single image super-resolution
    Xiaole Chen
    Ruifeng Yang
    Chenxia Guo
    Signal, Image and Video Processing, 2022, 16 : 1793 - 1801