A Moso bamboo gene VQ28 confers salt tolerance to transgenic Arabidopsis plants

被引:30
|
作者
Cheng, Xinran [1 ]
Wang, Yujiao [1 ]
Xiong, Rui [1 ]
Gao, Yameng [2 ]
Yan, Hanwei [1 ,2 ]
Xiang, Yan [1 ,2 ]
机构
[1] Anhui Agr Univ, Lab Modern Biotechnol, Sch Forestry & Landscape Architecture, Hefei 230036, Peoples R China
[2] Anhui Agr Univ, Natl Engn Lab Crop Stress Resistance Breeding, Hefei 230036, Peoples R China
基金
美国国家科学基金会;
关键词
Abscisic acid; Fluorescence complementation analysis; Malondialdehyde; PeVQ28; Proline content; Salt; Yeast two hybrid; MOTIF-CONTAINING PROTEINS; GENOME-WIDE IDENTIFICATION; ABSCISIC-ACID BIOSYNTHESIS; STRESS TOLERANCE; TRANSCRIPTION FACTOR; SIGNAL-TRANSDUCTION; EXPRESSION ANALYSIS; ABIOTIC STRESSES; DROUGHT; RICE;
D O I
10.1007/s00425-020-03391-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Main conclusion Overexpression ofPeVQ28in Arabidopsis regulated the expression of salt/ABA-responsive genes and indicated thatPeVQ28may affect the ABA synthesis induced by stress in plants by regulating salt tolerance. Plant-specific VQ proteins, which contain a conserved short FxxhVQxhTG amino acid sequence motif, play an important role in abiotic stress responses, but their functions have not been previously studied in Moso bamboo (Phyllostachys edulis). In this study, real-time quantitative PCR analysis indicated that expression of PeVQ28 was induced by salt and abscisic acid stresses. A subcellular localization experiment showed that PeVQ28 was localized in the nuclei of tobacco leaf cells. Yeast two-hybrid and bimolecular fluorescence complementation analyses indicated that PeVQ28 and WRKY83 interactions occurred in the nucleus. The PeVQ28-overexpressing Arabidopsis lines showed increased resistance to salt stress and enhanced sensitivity to ABA. Compared with wild-type plants under salt stress, PeVQ28-transgenic plants had lower malondialdehyde and higher proline contents, which might enhance stress tolerance. Overexpression of PeVQ28 in Arabidopsis enhanced expression of salt- and ABA-responsive genes. These results suggest that PeVQ28 functions in the positive regulation of salt tolerance mediated by an ABA-dependent signaling pathway.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Overexpression of the potato VQ31 enhances salt tolerance in Arabidopsis
    Zhai, Mingming
    Ao, Zhengxiong
    Qu, Haoran
    Guo, Dongwei
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [42] Enhancement of salt tolerance of transgenic Arabidopsis thaliana by Zostera japonica DnaJ gene
    Chen, Siting
    Qiu, Guanglong
    ISRAEL JOURNAL OF PLANT SCIENCES, 2023, 70 (3-4) : 244 - 252
  • [43] Expression of Bruguiera gymnorhizaBgARP1 enhances salt tolerance in transgenic Arabidopsis plants
    Masashi Miyama
    Yuichi Tada
    Euphytica, 2011, 177 : 383 - 392
  • [44] An Alcohol Dehydrogenase Gene from Synechocystis sp Confers Salt Tolerance in Transgenic Tobacco
    Yi, So Young
    Ku, Seong Sub
    Sim, Hee-Jung
    Kim, Sang-Kyu
    Park, Ji Hyun
    Lyu, Jae Il
    So, Eun Jin
    Choi, So Yeon
    Kim, Jonghyun
    Ahn, Myung Suk
    Kim, Suk Weon
    Park, Hyunwoo
    Jeong, Won Joong
    Lim, Yong Pyo
    Min, Sung Ran
    Liu, Jang Ryol
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [45] Overexpression of proline transporter gene isolated from halophyte confers salt tolerance in Arabidopsis
    Shen, YG
    Zhang, WK
    Yan, DQ
    Du, BX
    Zhang, JS
    Chen, SY
    ACTA BOTANICA SINICA, 2002, 44 (08): : 956 - 962
  • [46] Evaluation of salt tolerance of transgenic tobacco plants bearing the P5CS1 gene of Arabidopsis thaliana
    S. M. Ibragimova
    E. A. Trifonova
    E. A. Filipenko
    V. K. Shymny
    Russian Journal of Genetics, 2015, 51 : 1181 - 1188
  • [47] Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants
    Li, Peiling
    Song, Aiping
    Gao, Chunyan
    Wang, Linxiao
    Wang, Yinjie
    Sun, Jing
    Jiang, Jiafu
    Chen, Fadi
    Chen, Sumei
    PLANT CELL REPORTS, 2015, 34 (08) : 1365 - 1378
  • [48] Evaluation of salt tolerance of transgenic tobacco plants bearing the P5CS1 gene of Arabidopsis thaliana
    Ibragimova, S. M.
    Trifonova, E. A.
    Filipenko, E. A.
    Shymny, V. K.
    RUSSIAN JOURNAL OF GENETICS, 2015, 51 (12) : 1181 - 1188
  • [49] Antisense expression of an Arabidopsis ω-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants
    Im, YJ
    Han, O
    Chung, GC
    Cho, BH
    MOLECULES AND CELLS, 2002, 13 (02) : 264 - 271
  • [50] Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants
    Peiling Li
    Aiping Song
    Chunyan Gao
    Linxiao Wang
    Yinjie Wang
    Jing Sun
    Jiafu Jiang
    Fadi Chen
    Sumei Chen
    Plant Cell Reports, 2015, 34 : 1365 - 1378