Multi-objective optimization for helium-heated reverse water gas shift reactor by using NSGA-II

被引:79
|
作者
Zhang, Lei [1 ,2 ,3 ]
Chen, Lingen [1 ,2 ]
Xia, Shaojun [1 ,2 ]
Ge, Yanlin [1 ,2 ]
Wang, Chao [2 ]
Feng, Huijun [1 ,2 ]
机构
[1] Wuhan Inst Technol, Inst Thermal Sci & Power Engn, Wuhan 430205, Peoples R China
[2] Wuhan Inst Technol, Sch Mech & Elect Engn, Wuhan 430205, Peoples R China
[3] Naval Univ Engn, Inst Thermal Sci & Power Engn, Wuhan 430033, Peoples R China
关键词
Reverse water gas shift; High-temperature helium; Finite-time thermodynamics; Multi-objective optimization; Two-dimensional pseudo-homogeneous model; Generalized thermodynamic optimization; ENTROPY GENERATION MINIMIZATION; LOW-CARBON FUEL; THERMODYNAMIC ANALYSIS; CO2; HYDROGENATION; FINITE-TIME; TRANSFER COEFFICIENT; BED REACTORS; CATALYST; SEAWATER; MODEL;
D O I
10.1016/j.ijheatmasstransfer.2019.119025
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermodynamic performance of helium-heated reverse water gas shift (RWGS) reactor is investigated by using the theory of finite-time thermodynamics. Taking into account both the radial temperature gradients and the diffusion-reaction phenomenon inside the catalytic pellets, a comprehensive two-dimensional pseudo-homogeneous mathematical model is established to represent the reactor. By using numerical calculations, the thermodynamic performance of reactors in the given conditions is analyzed, the influences of the effective parameters on reactor performance are also examined. Eventually, from the perspective of heat management and production improvement, a multi-objective optimization (MOO) procedure based on the non-dominated sorting genetic algorithm (NSGA-II) is applied to investigate the best working parameters considering the minimum radial temperature difference and maximum conversion rate as optimization objective functions. The results show that significant radial temperature gradients and the resulting radial gradients of apparent reaction rate can be observed. The thermodynamic performance of the counter-flow reactor is superior to that of the parallel-flow pattern. The MOO is an effective technique for selecting the best working parameters to reduce the radial temperature difference and improve the conversion rate simultaneously. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Multi-objective optimization problems with arena principle and NSGA-II
    Dong-Feng W.
    Feng X.
    Information Technology Journal, 2010, 9 (02) : 381 - 385
  • [12] A comprehensive survey on NSGA-II for multi-objective optimization and applications
    Ma, Haiping
    Zhang, Yajing
    Sun, Shengyi
    Liu, Ting
    Shan, Yu
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 15217 - 15270
  • [13] Multi-objective Drilling Trajectory Optimization Based on NSGA-II
    Huang, Wendi
    Wu, Min
    Cheng, Jun
    Chen, Xin
    Cao, Weihua
    Hu, Yule
    Gao, Hui
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 1234 - 1239
  • [14] Multi-objective optimization using NSGA-II for power distribution system reconfiguration
    Vitorino, Romeu M.
    Jorge, Humberto M.
    Neves, Luis P.
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2015, 25 (01): : 38 - 53
  • [15] Multi-objective optimization of turbomachinery using improved NSGA-II and approximation model
    Wang, X. D.
    Hirsch, C.
    Kang, Sh.
    Lacor, C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (9-12) : 883 - 895
  • [16] Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS
    Lin, Yi-Kuei
    Yeh, Cheng-Ta
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 218 (03) : 735 - 746
  • [17] Multi-objective optimization for channel allocation in mobile computing using NSGA-II
    Vidyarthi, Deo
    Khanbary, Lutfi
    INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, 2011, 21 (03) : 247 - 266
  • [18] Multi-objective optimization of controllable configurations for bistable laminates using NSGA-II
    Zhang, Zheng
    Liao, Chongjie
    Chai, Hao
    Ni, Xiangqi
    Pei, Kai
    Sun, Min
    Wu, Huaping
    Jiang, Shaofei
    COMPOSITE STRUCTURES, 2021, 266
  • [19] A Sensitivity Analysis of Multi-objective Cooperative Planning Optimization Using NSGA-II
    Ben Yahia, Wafa
    Ayadi, Omar
    Masmoudi, Faouzi
    MULTIPHYSICS MODELLING AND SIMULATION FOR SYSTEMS DESIGN AND MONITORING, 2015, 2 : 327 - 337
  • [20] Multi-objective Optimization of Pulsed Gas Metal Arc Welding Process Using Neuro NSGA-II
    Pal K.
    Pal S.K.
    Journal of The Institution of Engineers (India): Series C, 2019, 100 (03) : 501 - 510