Gauge theory of self-similar system

被引:1
|
作者
Olemskoi, AI [1 ]
机构
[1] Sumy State Univ, Dept Phys Elect, UA-244007 Sumy, Ukraine
来源
PHYSICA A | 2001年 / 295卷 / 3-4期
关键词
Jackson's derivative; dilatation parameter; probability distribution;
D O I
10.1016/S0378-4371(01)00012-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On the basis of a dilatation invariant Lagrangian. equations governing probability density and gauge potential of the non-stationary self-similar stochastic system are determined. It is shown that an automodel regime is realized at small time interval determined by the Tsallis' parameter q > 1. An exponential decay occurs at large time where the dilatation parameter and the partial scale tend to constant values. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:409 / 415
页数:7
相关论文
共 50 条
  • [31] Analytic theory of self-similar mode-locking
    Bale, Brandon G.
    Kutz, J. Nathan
    Wise, Frank
    OPTICS LETTERS, 2008, 33 (09) : 911 - 913
  • [32] THEORY OF SELF-SIMILAR DECAY OF HOMOGENEOUS ISOTROPIC TURBULENCE
    BARENBLATT, GI
    GAVRILOV, AA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1973, 65 (02): : 806 - 813
  • [33] Self-similar and asymptotically self-similar solutions of nonlinear wave equations
    Hartmut Pecher
    Mathematische Annalen, 2000, 316 : 259 - 281
  • [34] FOURIER DECAY OF SELF-SIMILAR MEASURES AND SELF-SIMILAR SETS OF UNIQUENESS
    Varju, Peter P.
    Yu, Han
    ANALYSIS & PDE, 2022, 15 (03): : 843 - 858
  • [35] Rogue waves, self-similar statistics, and self-similar intermediate asymptotics
    Liang, Chunhao
    Ponomarenko, Sergey A.
    Wang, Fei
    Cai, Yangjian
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [36] Self-similar and asymptotically self-similar solutions of nonlinear wave equations
    Pecher, H
    MATHEMATISCHE ANNALEN, 2000, 316 (02) : 259 - 281
  • [37] Sufficient condition for a topological self-similar set to be a self-similar set
    Ni, Tianjia
    Wen, Zhiying
    TOPOLOGY AND ITS APPLICATIONS, 2024, 358
  • [38] Self-similar pattern formation and continuous mechanics of self-similar systems
    Dyskin, A. V.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2007, 11 (02) : 665 - 676
  • [39] Self-similar magnetoconductance fluctuations induced by self-similar periodic orbits
    Budiyono, A
    Nakamura, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (09) : 2090 - 2093
  • [40] Self-similar sets and self-similar measures in the p-adics
    Hare, Kevin George
    Vavra, Tomas
    JOURNAL OF FRACTAL GEOMETRY, 2024, 11 (3-4) : 247 - 287