Cryptanalysis and Improvement of DeepPAR: Privacy-Preserving and Asynchronous Deep Learning for Industrial IoT

被引:9
|
作者
Chen, Yange [1 ,2 ]
He, Suyu [3 ]
Wang, Baocang [4 ,5 ]
Duan, Pu [6 ]
Zhang, Benyu [6 ]
Hong, Zhiyong [7 ,8 ]
Ping, Yuan [2 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, Xian 710071, Peoples R China
[2] Xuchang Univ, Sch Informat Engn, Xuchang 461000, Peoples R China
[3] Shanghai Jiyin Network Technol Co Ltd, Backend Engn Res & Dev Dept, Shanghai 200000, Peoples R China
[4] Xidian Univ, Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[5] Xidian Univ, Cryptog Res Ctr, Xian 710071, Peoples R China
[6] Ant Grp, Secure Collaborat Intelligence Lab, Hangzhou 310000, Peoples R China
[7] Wuyi Univ, Fac Intelligence Manufacture, Jiangmen 529020, Peoples R China
[8] Wuyi Univ, Yue Gang Ao Ind Big Data Collaborat Innovat Ctr, Jiangmen 529020, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2022年 / 9卷 / 21期
基金
中国国家自然科学基金;
关键词
Deep learning; Servers; Training; Privacy; Industrial Internet of Things; Production; Homomorphic encryption; Asynchronous deep learning; homomorphic encryption; privacy preserving; proxy re-encryption; ENCRYPTION; PROTOCOLS;
D O I
10.1109/JIOT.2022.3181665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Industrial Internet of Things (IIoT) is gradually changing the mode of traditional industries with the rapid development of big data. Besides, thanks to the development of deep learning, it can be used to extract useful knowledge from the large amount of data in the IIoT to help improve production and service quality. However, the lack of large-scale data sets will lead to low performance and overfitting of learning models. Therefore, federated deep learning with distributed data sets has been proposed. Nevertheless, the research has shown that federated learning can also leak the private data of participants. In IIoT, once the privacy of participants in some special application scenarios is leaked, it will directly affect national security and people's lives, such as smart power grid and smart medical care. At present, several privacy-preserving federated learning schemes have been proposed to preserve data privacy of participants, but security issues prevent them from being fully applied. In this article, we analyze the security of the DeepPAR scheme proposed by Zhang et al., and point out that the scheme is insecure in the re-encryption key generation process, which will cause the leakage of the secret key of participants or the proxy server. In addition, the scheme is not resistant to collusion attacks between the parameter server and participants. Based on this, we propose an improved scheme. The security proof shows that the improved scheme solves the security problem of the original scheme and is resistant to collusion attacks. Finally, the security and accuracy of the scheme is illustrated by performance analysis.
引用
收藏
页码:21958 / 21970
页数:13
相关论文
共 50 条
  • [41] Privacy-Preserving Collaborative Deep Learning With Unreliable Participants
    Zhao, Lingchen
    Wang, Qian
    Zou, Qin
    Zhang, Yan
    Chen, Yanjiao
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 1486 - 1500
  • [42] A comprehensive survey and taxonomy on privacy-preserving deep learning
    Tran, Anh-Tu
    Luong, The-Dung
    Huynh, Van-Nam
    NEUROCOMPUTING, 2024, 576
  • [43] Privacy-Preserving Deep Learning Based Record Linkage
    Ranbaduge, Thilina
    Vatsalan, Dinusha
    Ding, Ming
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6839 - 6850
  • [44] Privacy-Preserving Deep Learning With Homomorphic Encryption: An Introduction
    Falcetta, Alessandro
    Roveri, Manuel
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (03) : 14 - 25
  • [45] Differentially Privacy-preserving Social IoT
    Zhang, Linjie
    Zhu, Xiaoyan
    Han, Xuexue
    Ma, Jianfeng
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [46] On Fully Homomorphic Encryption for Privacy-Preserving Deep Learning
    Hernandez Marcano, Nestor J.
    Moller, Mads
    Hansen, Soren
    Jacobsen, Rune Hylsberg
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [47] Privacy-Preserving Deep Learning on Big Data in Cloud
    Fan, Yongkai
    Zhang, Wanyu
    Bai, Jianrong
    Lei, Xia
    Li, Kuanching
    CHINA COMMUNICATIONS, 2023, 20 (11) : 176 - 186
  • [48] Competitor Attack Model for Privacy-Preserving Deep Learning
    Zhao, Dongdong
    Liao, Songsong
    Li, Huanhuan
    Xiang, Jianwen
    2023 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING WORKSHOPS, CCGRIDW, 2023, : 133 - 140
  • [49] EPDL: An efficient and privacy-preserving deep learning for crowdsensing
    Chang Xu
    Guoxie Jin
    Liehuang Zhu
    Chuan Zhang
    Yu Jia
    Peer-to-Peer Networking and Applications, 2022, 15 : 2529 - 2541
  • [50] Privacy-Preserving in the Context of Data Mining and Deep Learning
    Altalhi, Amjaad
    Al-Saedi, Maram
    Alsuwat, Hatim
    Alsuwat, Emad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (06): : 137 - 142