Redox-Regulated Adaptation of Streptococcus oligofermentans to Hydrogen Peroxide Stress

被引:11
|
作者
Tong, Huichun [1 ,2 ]
Dong, Yuzhu [1 ,2 ]
Wang, Xinhui [1 ,2 ]
Hu, Qingqing [1 ,2 ]
Yang, Fan [3 ]
Yi, Meiqi [3 ]
Deng, Haiteng [3 ]
Dong, Xiuzhu [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Microbiol, State Key Lab Microbial Resources, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, MOE Key Lab Bioinformat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Streptococcus; cysteine oxidation; hydrogen peroxide; posttranslational regulation; redox signaling; transcriptional regulation; TRANSCRIPTION FACTOR; PERR; RESISTANCE; H2O2; MUTANS; PNEUMONIAE; MANGANESE; INSIGHTS; OXIDASE; GENE;
D O I
10.1128/mSystems.00006-20
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Preexposure to a low concentration of H2O2 significantly increases the survivability of catalase-negative streptococci in the presence of a higher concentration of H2O2. However, the mechanisms of this adaptation remain unknown. Here, using a redox proteomics assay, we identified 57 and 35 cysteine-oxidized proteins in Streptococcus oligofermentans bacteria that were anaerobically cultured and then pulsed with 40 mu M H2O2 and that were statically grown in a 40-ml culture, respectively. The oxidized proteins included the peroxide-responsive repressor PerR, the manganese uptake repressor MntR, thioredoxin system proteins Trx and Tpx, and most glycolytic proteins. Cysteine oxidations of these proteins were verified through redox Western blotting, immunoprecipitation, and liquid chromatography-tandem mass spectrometry assays. In particular, Zn2+-coordinated Cys139 and Cys142 mutations eliminated the H2O2 oxidation of PerR, and inductively coupled plasma mass spectrometry detected significantly decreased amounts of Zn2+ in H2O2-treated PerR, demonstrating that cysteine oxidation results in Zn2+ loss. An electrophoretic mobility shift assay (EMSA) determined that the DNA binding of Mn2+-bound PerR protein (PerR:Zn,Mn) was abolished by H2O2 treatment but was restored by dithiothreitol reduction, verifying that H2O2 inactivates streptococcal PerR:Zn,Mn through cysteine oxidation, analogous to the findings for MntR. Quantitative PCR and EMSA demonstrated that tpx, mntA, mntR, and dpr belonged to the PerR regulons but that only dpr was directly regulated by PerR; mntA was also controlled by MntR. Deletion of mntR significantly reduced the low-H2O2-concentration-induced adaptation of S. oligofermentans to a higher H2O2 concentration, while the absence of PerR completely abolished the self-protection. Therefore, a low H2O2 concentration resulted in the cysteine-reversible oxidations of PerR and MntR to derepress their regulons, which function in cellular metal and redox homeostasis and which endow streptococci with the antioxidative capability. This work reveals a novel Cys redox-based H2O2 defense strategy employed by catalase-negative streptococci in Mn2+-rich cellular environments. IMPORTANCE The catalase-negative streptococci produce as well as tolerate high levels of H2O2. This work reports the molecular mechanisms of low-H(2)O2-concentration-induced adaptation to higher H2O2 stress in a Streptococcus species, in which the peroxide-responsive repressor PerR and its redox regulons play the major role. Distinct from the Bacillus subtilis PerR, which is inactivated by H2O2 through histidine oxidation by the Fe2+-triggered Fenton reaction, the streptococcal PerR is inactivated by H2O2 oxidation of the structural Zn2+ binding cysteine residues and thus derepresses the expression of genes defending against oxidative stress. The reversible cysteine oxidation could provide flexibility for PerR regulation in streptococci, and the mechanism might be widely used by lactic acid bacteria, including
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria
    Maksimov, Eugene G.
    Mironov, Kirill S.
    Trofimova, Marina S.
    Nechaeva, Natalya L.
    Todorenko, Daria A.
    Klementiev, Konstantin E.
    Tsoraev, Georgy V.
    Tyutyaev, Eugene V.
    Zorina, Anna A.
    Feduraev, Pavel V.
    Allakhverdiev, Suleyman I.
    Paschenko, Vladimir Z.
    Los, Dmitry A.
    PHOTOSYNTHESIS RESEARCH, 2017, 133 (1-3) : 215 - 223
  • [12] Stress-responsive protein kinases in redox-regulated apoptosis signaling
    Matsuzawa, A
    Ichijo, H
    ANTIOXIDANTS & REDOX SIGNALING, 2005, 7 (3-4) : 472 - 481
  • [13] Redox-regulated RNA helicase expression
    Kujat, SL
    Owttrim, GW
    PLANT PHYSIOLOGY, 2000, 124 (02) : 703 - 713
  • [14] Identification of a redox-regulated chaperone network
    Hoffmann, JH
    Linke, K
    Graf, PCF
    Lilie, H
    Jakob, U
    EMBO JOURNAL, 2004, 23 (01): : 160 - 168
  • [15] Prediction of Redox-regulated Cys in Yeast
    Fan, S. W.
    George, R. A.
    Haworth, N. L.
    Chiu, J.
    Dawes, I. W.
    Wouters, M. A.
    ICCB 2008: PROCEEDINGS OF THE 9TH INTERNATIONAL CONGRESS ON CELL BIOLOGY, 2008, : 159 - +
  • [16] In vivo kinetics of a redox-regulated transcriptional switch
    Ding, HG
    Demple, B
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (16) : 8445 - 8449
  • [17] Dietary rational targeting of redox-regulated genes
    Bagyi, Joyce
    Sripada, Veda
    Aidone, Andrea M.
    Lin, H. -Y.
    Ruder, Elizabeth H.
    Crawford, Dana R.
    FREE RADICAL BIOLOGY AND MEDICINE, 2021, 173 : 19 - 28
  • [18] Glutathione peroxidases and redox-regulated gene expression
    Brigelius-Flohé, R
    Banning, A
    FREE RADICAL RESEARCH, 2005, 39 : S13 - S13
  • [19] Compartmentalization of Redox-Regulated Signaling in the Pulmonary Circulation
    Black, Stephen M.
    Nozik-Grayck, Eva
    ANTIOXIDANTS & REDOX SIGNALING, 2019, 31 (12) : 801 - 803
  • [20] Glutathione peroxidases and redox-regulated transcription factors
    Brigelius-Flohe, Regina
    BIOLOGICAL CHEMISTRY, 2006, 387 (10-11) : 1329 - 1335