Nanobubble-induced flow of immersed glassy polymer films

被引:3
|
作者
Pedersen, Christian [1 ]
Ren, Shuai [2 ]
Wang, Yuliang [2 ,3 ]
Carlson, Andreas [1 ]
Salez, Thomas [4 ,5 ]
机构
[1] Univ Oslo, Dept Math, Mech Div, N-0316 Oslo, Norway
[2] Beihang Univ, Sch Mech Engn & Automat, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[4] Univ Bordeaux, LOMA, CNRS, UMR 5798, F-33405 Talence, France
[5] Hokkaido Univ, Global Inst Collaborat Res & Educ, Global Stn Soft Matter, Sapporo, Hokkaido 0600808, Japan
基金
中国国家自然科学基金;
关键词
TRANSITION TEMPERATURE; SURFACE MOBILITY; THIN; DYNAMICS; ENTANGLEMENT; RELAXATION;
D O I
10.1103/PhysRevFluids.6.114006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the free-surface deformation dynamics of an immersed glassy thin polymer film supported on a substrate, induced by an air nanobubble at the free surface. We combine analytical and numerical treatments of the glassy thin film equation, resulting from the lubrication approximation applied to the surface mobile layer of the glassy film, under the driving of an axisymmetric step function in the pressure term accounting for the nanobubble's Laplace pressure. Using the method of Green's functions, we derive a general solution for the film profile. We show that the lateral extent of the surface perturbation follows an asymptotic viscocapillary power-law behavior in time, and that the film's central height decays logarithmically in time in this regime. This process eventually leads to film rupture and dewetting at finite time, for which we provide an analytical prediction exhibiting explicitly the dependencies in surface mobility, film thickness, and bubble size, among others. Finally, using finite-element numerical integration, we discuss how nonlinear effects induced by the curvature and film profile can affect the evolution.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Confinement Effect on Strain Localizations in Glassy Polymer Films
    Bay, R. Konane
    Shimomura, Shinichiro
    Liu, Yujie
    Ilton, Mark
    Crosby, Alfred J.
    MACROMOLECULES, 2018, 51 (10) : 3647 - 3653
  • [22] Effect of physical ageing in thin glassy polymer films
    Kawana, S
    Jones, RAL
    EUROPEAN PHYSICAL JOURNAL E, 2003, 10 (03): : 223 - 230
  • [23] ACCELERATED PHYSICAL AGING OF THIN GLASSY POLYMER-FILMS
    PFROMM, PH
    KOROS, WJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 219 - PMSE
  • [24] Dissolution behavior of glassy polymer films founded on reptation theory
    Kong, BS
    Kim, D
    POLYMER-KOREA, 1997, 21 (02) : 270 - 281
  • [25] Enthalpy recovery and structural relaxation in layered glassy polymer films
    Murphy, Thomas M.
    Langhe, D. S.
    Ponting, M.
    Baer, E.
    Freeman, B. D.
    Paul, D. R.
    POLYMER, 2012, 53 (18) : 4002 - 4009
  • [26] Poling properties of doped films of transparent nitrophenyltriazole in glassy polymer
    Ye, C
    Feng, ZM
    Xiang, YX
    Xin, RB
    Jin, F
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 1996, 5 (02): : 409 - 411
  • [27] Poling properties of doped films of transparent nitrophenyltriazole in glassy polymer
    Cheng, Y.E.
    Zhiming, Feng
    Yingxu, Xiang
    Rubin, Xin
    Feng, Jin
    Journal of Nonlinear Optical Physics and Materials, 1996, 5 (02): : 409 - 411
  • [28] Properties of thick vs. thin glassy polymer films
    Paul, Donald R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [29] Structural colour using organized microfibrillation in glassy polymer films
    Ito, Masateru M.
    Gibbons, Andrew H.
    Qin, Detao
    Yamamoto, Daisuke
    Jiang, Handong
    Yamaguchi, Daisuke
    Tanaka, Koichiro
    Sivaniah, Easan
    NATURE, 2019, 570 (7761) : 363 - +
  • [30] Capillary deformation of ultrathin glassy polymer films by air nanobubbles
    Ren, Shuai
    Pedersen, Christian
    Carlson, Andreas
    Salez, Thomas
    Wang, Yuliang
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):