A Posteriori Error Estimates of Triangular Mixed Finite Element Methods for Semi linear Optimal Control Problems

被引:0
|
作者
Lu, Zuliang [2 ]
Chen, Yanping [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Semilinear optimal control problems; mixed finite element methods; a posteriori error estimates; QUADRATIC OPTIMAL-CONTROL; PARABOLIC EQUATIONS; ELLIPTIC-EQUATIONS; STOKES EQUATIONS; SPECTRAL METHOD; SUPERCONVERGENCE; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods. The state and co-state are approximated by the order k <= 1 Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant element. We derive a posteriori error estimates for the coupled state and control approximations. A numerical example is presented in confirmation of the theory.
引用
收藏
页码:242 / 256
页数:15
相关论文
共 50 条
  • [21] A posteriori error estimates of mixed finite element methods for general optimal control problems governed by integro-differential equations
    Zuliang Lu
    Dayong Liu
    Journal of Inequalities and Applications, 2013
  • [22] A Priori Error Estimates of Mixed Finite Element Methods for General Linear Hyperbolic Convex Optimal Control Problems
    Lu, Zuliang
    Huang, Xiao
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [23] A posteriori error estimates of mixed DG finite element methods for linear parabolic equations
    Hou, Tianliang
    APPLICABLE ANALYSIS, 2013, 92 (08) : 1655 - 1665
  • [24] A posteriori error estimates for hp finite element solutions of convex optimal control problems
    Chen, Yanping
    Lin, Yijie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (12) : 3435 - 3454
  • [25] A posteriori error estimates of the lowest order Raviart-Thomas mixed finite element methods for convective diffusion optimal control problems
    Hua, Yuchun
    Tang, Yuelong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [26] A posteriori error estimates of the lowest order Raviart-Thomas mixed finite element methods for convective diffusion optimal control problems
    Yuchun Hua
    Yuelong Tang
    Journal of Inequalities and Applications, 2015
  • [27] New a posteriori error estimates for hp version of finite element methods of nonlinear parabolic optimal control problems
    Zuliang Lu
    Hongyan Liu
    Chunjuan Hou
    Longzhou Cao
    Journal of Inequalities and Applications, 2016
  • [28] New a posteriori error estimates for hp version of finite element methods of nonlinear parabolic optimal control problems
    Lu, Zuliang
    Liu, Hongyan
    Hou, Chunjuan
    Cao, Longzhou
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 17
  • [29] Error Estimates and Superconvergence of Mixed Finite Element Methods for Optimal Control Problems with Low Regularity
    Chen, Yanping
    Hou, Tianliang
    Zheng, Weishan
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 751 - 768
  • [30] Error Estimates of Variational Discretization and Mixed Finite Element Methods for Quasilinear Optimal Control Problems
    Lu, Zuliang
    Huang, Xiao
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 3519 - 3523