A Posteriori Error Estimates of Triangular Mixed Finite Element Methods for Semi linear Optimal Control Problems

被引:0
|
作者
Lu, Zuliang [2 ]
Chen, Yanping [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Semilinear optimal control problems; mixed finite element methods; a posteriori error estimates; QUADRATIC OPTIMAL-CONTROL; PARABOLIC EQUATIONS; ELLIPTIC-EQUATIONS; STOKES EQUATIONS; SPECTRAL METHOD; SUPERCONVERGENCE; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods. The state and co-state are approximated by the order k <= 1 Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant element. We derive a posteriori error estimates for the coupled state and control approximations. A numerical example is presented in confirmation of the theory.
引用
收藏
页码:242 / 256
页数:15
相关论文
共 50 条
  • [1] A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS
    Lu, Z.
    MATHEMATICAL REPORTS, 2016, 18 (03): : 335 - 354
  • [2] Error estimates of triangular mixed finite element methods for quasilinear optimal control problems
    Chen, Yanping
    Lu, Zuliang
    Guo, Ruyi
    FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (03) : 397 - 413
  • [3] Error estimates of triangular mixed finite element methods for quasilinear optimal control problems
    Yanping Chen
    Zuliang Lu
    Ruyi Guo
    Frontiers of Mathematics in China, 2012, 7 : 397 - 413
  • [4] A Posteriori Error Estimates of Semidiscrete Mixed Finite Element Methods for Parabolic Optimal Control Problems
    Chen, Yanping
    Lin, Zhuoqing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (01) : 85 - 108
  • [5] On a posteriori error estimates for the linear triangular finite element
    Jikun Zhao
    Shaochun Chen
    Calcolo, 2014, 51 : 287 - 304
  • [6] On a posteriori error estimates for the linear triangular finite element
    Zhao, Jikun
    Chen, Shaochun
    CALCOLO, 2014, 51 (02) : 287 - 304
  • [7] A posteriori error estimates for mixed finite element solutions of convex optimal control problems
    Chen, Yanping
    Liu, Wenbin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 211 (01) : 76 - 89
  • [8] Higher Order Triangular Mixed Finite Element Methods for Semi linear Quadratic Optimal Control Problems
    Deng, Kang
    Chen, Yanping
    Lu, Zuliang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (02) : 180 - 196
  • [9] A posteriori error estimates for mixed finite element approximation of nonlinear quadratic optimal control problems
    Chen, Yanping
    Lu, Zuliang
    Fu, Min
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (01): : 37 - 53
  • [10] Error estimates of mixed finite element methods for quadratic optimal control problems
    Xing, Xiaoqing
    Chen, Yanping
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1812 - 1820