Towards monocular vision-based autonomous flight through deep reinforcement learning

被引:28
|
作者
Kim, Minwoo [1 ]
Kim, Jongyun [2 ]
Jung, Minjae [1 ]
Oh, Hyondong [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Ulsan, South Korea
[2] Cranfield Univ, Cranfield, Beds, England
基金
新加坡国家研究基金会;
关键词
Obstacle avoidance; Depth estimation; Vision-based; Deep reinforcement learning; Q-learning; Navigation decision making; OBSTACLE AVOIDANCE;
D O I
10.1016/j.eswa.2022.116742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an obstacle avoidance strategy for small multi-rotor drones with a monocular camera using deep reinforcement learning. The proposed method is composed of two steps: depth estimation and navigation decision making. For the depth estimation step, a pre-trained depth estimation algorithm based on the convolutional neural network is used. On the navigation decision making step, a dueling double deep Q-network is employed with a well-designed reward function. The network is trained using the robot operating system and Gazebo simulation environment. To validate the performance and robustness of the proposed approach, simulations and real experiments have been carried out using a Parrot Bebop2 drone in various complex indoor environments. We demonstrate that the proposed algorithm successfully travels along the narrow corridors with the texture free walls, people, and boxes.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Autonomous Vision-Based UAV Landing with Collision Avoidance Using Deep Learning
    Liao, Tianpei
    Haridevan, Amal
    Liu, Yibo
    Shan, Jinjun
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 79 - 87
  • [32] Vision-Based Robotic Object Grasping-A Deep Reinforcement Learning Approach
    Chen, Ya-Ling
    Cai, Yan-Rou
    Cheng, Ming-Yang
    MACHINES, 2023, 11 (02)
  • [33] A Vision-based Irregular Obstacle Avoidance Framework via Deep Reinforcement Learning
    Gao, Lingping
    Ding, Jianchuan
    Liu, Wenxi
    Piao, Haiyin
    Wang, Yuxin
    Yang, Xin
    Yin, Baocai
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 9262 - 9269
  • [34] Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning
    Zhou, Xiaomao
    Bai, Tao
    Gao, Yanbin
    Han, Yuntao
    SENSORS, 2019, 19 (07)
  • [35] A contribution to vision-based autonomous helicopter flight in urban environments
    Muratet, L
    Doncieux, S
    Briere, Y
    Meyer, JA
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2005, 50 (04) : 195 - 209
  • [36] Towards vision-based safe landing for an autonomous helicopter
    Garcia-Pardo, PJ
    Sukhatme, GS
    Montgomery, JF
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2002, 38 (01) : 19 - 29
  • [37] Combining Deep Learning and RGBD SLAM for Monocular Indoor Autonomous Flight
    Martinez-Carranza, J.
    Rojas-Perez, L. O.
    Cabrera-Ponce, A. A.
    Munguia-Silva, R.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, MICAI 2018, PT II, 2018, 11289 : 356 - 367
  • [38] Autonomous Reinforcement Control of Underwater Vehicles based on Monocular Depth Vision
    Zhu, Pengli
    Yao, Shuhan
    Liu, Yancheng
    Liu, Siyuan
    Liang, Xiaoling
    IFAC PAPERSONLINE, 2020, 53 (02): : 9201 - 9206
  • [39] Autonomous exploration through deep reinforcement learning
    Yan, Xiangda
    Huang, Jie
    He, Keyan
    Hong, Huajie
    Xu, Dasheng
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2023, 50 (05): : 793 - 803
  • [40] Autonomous Mobile Robot with Simple Navigation System Based on Deep Reinforcement Learning and a Monocular Camera
    Yokoyama, Koki
    Morioka, Kazuyuki
    2020 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2020, : 525 - 530