On Weighted Depths in Random Binary Search Trees

被引:0
|
作者
Aguech, Rafik [1 ]
Amri, Anis [2 ]
Sulzbach, Henning [3 ]
机构
[1] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[2] Univ Monastir, Ave Taher Hadded,BP 56, Monastir 5000, Tunisia
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
关键词
Analysis of algorithm; Data structures; Binary search trees; Central limit theorems; Contraction method; Random probability measures; PATH LENGTHS; QUICKSORT; DISTANCES; HEIGHT;
D O I
10.1007/s10959-017-0773-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Following the model introduced by Aguech et al. (Probab Eng Inf Sci 21:133-141, 2007), the weighted depth of a node in a labelled rooted tree is the sum of all labels on the path connecting the node to the root. We analyse weighted depths of nodes with given labels, the last inserted node, nodes ordered as visited by the depth first search process, the weighted path length and the weighted Wiener index in a random binary search tree. We establish three regimes of nodes depending on whether the second-order behaviour of their weighted depths follows from fluctuations of the keys on the path, the depth of the nodes or both. Finally, we investigate a random distribution function on the unit interval arising as scaling limit for weighted depths of nodes with at most one child.
引用
收藏
页码:1929 / 1951
页数:23
相关论文
共 50 条
  • [41] Optimal binary search trees
    Nagaraj, SV
    THEORETICAL COMPUTER SCIENCE, 1997, 188 (1-2) : 1 - 44
  • [42] Randomized binary search trees
    Martinez, C
    Roura, S
    JOURNAL OF THE ACM, 1998, 45 (02) : 288 - 323
  • [43] Skewed binary search trees
    Brodal, Gerth Stolting
    Moruz, Gabriel
    ALGORITHMS - ESA 2006, PROCEEDINGS, 2006, 4168 : 708 - 719
  • [44] Reductions in binary search trees
    Sánchez-Couso, JR
    Fernández-Camacho, MI
    THEORETICAL COMPUTER SCIENCE, 2006, 355 (03) : 327 - 353
  • [45] The algebra of binary search trees
    Hivert, F
    Novelli, JC
    Thibon, JY
    THEORETICAL COMPUTER SCIENCE, 2005, 339 (01) : 129 - 165
  • [46] The Geometry of Binary Search Trees
    Demaine, Erik D.
    Harmon, Dion
    Iacono, John
    Kane, Daniel
    Patrascu, Mihai
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 496 - +
  • [47] ON BINARY SEARCH-TREES
    DEPRISCO, R
    DESANTIS, A
    INFORMATION PROCESSING LETTERS, 1993, 45 (05) : 249 - 253
  • [48] ON THE SILHOUETTE OF BINARY SEARCH TREES
    Gruebel, Rudolf
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (05): : 1781 - 1802
  • [49] The profile of binary search trees
    Chauvin, B
    Drmota, M
    Jabbour-Hattab, J
    ANNALS OF APPLIED PROBABILITY, 2001, 11 (04): : 1042 - 1062
  • [50] ON RANDOM BINARY-TREES
    BROWN, GG
    SHUBERT, BO
    MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (01) : 43 - 65