Functional Series Representable as a Sum of Two Universal Series

被引:1
|
作者
Tetunashvili, Sh. [1 ,2 ]
机构
[1] Tbilisi State Univ, Razmadze Math Inst, GE-0177 Tbilisi, Georgia
[2] Georgian Tech Univ, GE-0175 Tbilisi, Georgia
关键词
D O I
10.1134/S106456241706014X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Series with respect to systems Phi = {phi(n) (x)}(n=1)(infinity) of measurable and almost everywhere finite functions are discussed. A necessary and sufficient condition for representing any series with respect to a system Phi as a sum of two universal series is formulated. A consequence of the condition is that any series with respect to an arbitrary complete and orthonormal system Phi is a sum of two universal series.
引用
收藏
页码:578 / 579
页数:2
相关论文
共 50 条
  • [41] The sum of a series: rational or irrational?
    Griffiths, Martin
    MATHEMATICAL GAZETTE, 2012, 96 (535): : 121 - 124
  • [42] Estimates of a sum of Dirichlet series
    Sheremeta M.M.
    Stets Y.V.
    Sumyk O.M.
    Journal of Mathematical Sciences, 2013, 194 (5) : 557 - 572
  • [43] The asymptotic sum of a Kapteyn series
    Boersma, J
    Yakubovich, SB
    SIAM REVIEW, 1998, 40 (04) : 986 - 990
  • [44] On the sum of some alternating series
    Witula, Roman
    Slota, Damian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (06) : 2658 - 2664
  • [45] The sum of a series of cosecants.
    Williams, WLG
    PHILOSOPHICAL MAGAZINE, 1935, 19 (126) : 402 - 404
  • [46] The sum of series of cosecants.
    Watson, GN
    PHILOSOPHICAL MAGAZINE, 1923, 45 (267): : 577 - 581
  • [47] REMARK ON APPROXIMATION OF SERIES SUM
    HILLION, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (03): : 155 - 158
  • [48] HOW TO SUM A FINITE SERIES
    ALBRIGHT, JR
    AMERICAN JOURNAL OF PHYSICS, 1970, 38 (08) : 990 - &
  • [49] A convergent series with zero sum
    Scott, J. A.
    MATHEMATICAL GAZETTE, 2014, 98 (542): : 325 - 327
  • [50] Note on the sum of an oscillating series
    Verblunsky, S
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1930, 26 : 152 - 157