A unified view of inequalities for distance-regular graphs, part I

被引:3
|
作者
Neumaier, Arnold [1 ]
Penjic, Safet [2 ]
机构
[1] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Primorska, Andrej Marus Inst, Muzejski Trg 2, Koper 6000, Slovenia
关键词
Distance-regular graph; Diameter bound; Linear constraint satisfaction; problem; SUBGRAPHS; DIAMETER;
D O I
10.1016/j.jctb.2020.09.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the language of a configuration and of t-point counts for distance-regular graphs (DRGs). Every t-point count can be written as a sum of (t - 1)-point counts. This leads to a system of linear equations and inequalities for the t-point counts in terms of the intersection numbers, i.e., a linear constraint satisfaction problem (CSP). This language is a very useful tool for a better understanding of the combinatorial structure of distance-regular graphs. Among others we prove a new diameter bound for DRGs that is tight for the Biggs-Smith graph. We also obtain various old and new inequalities for the parameters of DRGs, including the diameter bounds by Terwilliger. (C)& nbsp;2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:392 / 439
页数:48
相关论文
共 50 条
  • [31] On the primitive idempotents of distance-regular graphs
    Tomiyama, M
    DISCRETE MATHEMATICS, 2001, 240 (1-3) : 281 - 294
  • [32] On antipodal distance-regular graphs with μ=1
    Nirova, M. S.
    DOKLADY MATHEMATICS, 2013, 87 (01) : 69 - 72
  • [33] On the Cheeger constant for distance-regular graphs
    Qiao, Zhi
    Koolen, Jack H.
    Markowsky, Greg
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 173
  • [34] Tails of bipartite distance-regular graphs
    Lang, MS
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (08) : 1015 - 1023
  • [35] A valency bound for distance-regular graphs
    Qiao, Zhi
    Koolen, Jack
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 155 : 304 - 320
  • [36] The distance-regular graphs of valency four
    Brouwer, AE
    Koolen, JH
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1999, 10 (01) : 5 - 24
  • [37] CODES IN BIPARTITE DISTANCE-REGULAR GRAPHS
    BANNAI, E
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 16 (OCT): : 197 - 202
  • [38] On electric resistances for distance-regular graphs
    Koolen, Jack H.
    Markowsky, Greg
    Park, Jongyook
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (04) : 770 - 786
  • [39] On Distance-Regular Graphs with lambda = 2
    Makhnev, Alexander A.
    Nirova, Marina S.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (02): : 204 - 210
  • [40] Shortest paths in distance-regular graphs
    Bendito, E
    Carmona, A
    Encinas, AM
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (02) : 153 - 166