Obtaining spatially resolved tumor purity maps using deep multiple instance learning in a pan-cancer study

被引:6
|
作者
Oner, Mustafa Umit [1 ,2 ]
Chen, Jianbin [3 ]
Revkov, Egor [2 ,3 ]
James, Anne [4 ]
Heng, Seow Ye [4 ]
Kaya, Arife Neslihan [3 ]
Alvarez, Jacob Josiah Santiago [2 ,3 ]
Takano, Angela [4 ]
Cheng, Xin Min [4 ]
Lim, Tony Kiat Hon [4 ]
Tan, Daniel Shao Weng [3 ,5 ,6 ]
Zhai, Weiwei [3 ,7 ,8 ]
Skanderup, Anders Jacobsen [2 ,3 ,5 ]
Sung, Wing-Kin [2 ,3 ]
Lee, Hwee Kuan [2 ,9 ,10 ,11 ,12 ]
机构
[1] ASTAR, Bioinformat Inst, Singapore 138671, Singapore
[2] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
[3] ASTAR, Genome Inst Singapore, Singapore 138672, Singapore
[4] Singapore Gen Hosp, Dept Anat Pathol, Singapore 169608, Singapore
[5] Natl Canc Ctr Singapore, Div Med Oncol, Singapore 169610, Singapore
[6] Duke NUS Med Sch, Oncol Acad Clin Programme, Singapore 169857, Singapore
[7] Chinese Acad Sci, Inst Zool, Key Lab Zool Systemat & Evolut, Beijing 100101, Peoples R China
[8] Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China
[9] Singapore Eye Res Inst SERI, Singapore 169856, Singapore
[10] Image & Pervas Access Lab IPAL, Singapore 138632, Singapore
[11] Rehabil Res Inst Singapore, Singapore 308232, Singapore
[12] Singapore Inst Clin Sci, Singapore 117609, Singapore
来源
PATTERNS | 2022年 / 3卷 / 02期
关键词
COPY NUMBER; HETEROGENEITY; MICROENVIRONMENT; QUANTIFICATION; IDENTIFICATION; PERCENTAGE; EVOLUTION; IMPACT; DNA;
D O I
10.1016/j.patter.2021.100399
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tumor purity is the percentage of cancer cells within a tissue section. Pathologists estimate tumor purity to select samples for genomic analysis by manually reading hematoxylin-eosin (H&E)-stained slides, which is tedious, time consuming, and prone to inter-observer variability. Besides, pathologists' estimates do not correlate well with genomic tumor purity values, which are inferred from genomic data and accepted as accurate for downstream analysis. We developed a deep multiple instance learning model predicting tumor purity from H&E-stained digital histopathology slides. Our model successfully predicted tumor purity in eight The Cancer Genome Atlas (TCGA) cohorts and a local Singapore cohort. The predictions were highly consistent with genomic tumor purity values. Thus, our model can be utilized to select samples for genomic analysis, which will help reduce pathologists' workload and decrease inter-observer variability. Furthermore, our model provided tumor purity maps showing the spatial variation within sections. They can help better understand the tumor microenvironment.
引用
收藏
页数:15
相关论文
共 42 条
  • [21] MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data
    Albaradei, Somayah
    Napolitano, Francesco
    Thafar, Maha A.
    Gojobori, Takashi
    Essack, Magbubah
    Gao, Xin
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 4404 - 4411
  • [22] Spatially-resolved prediction of gene expression signatures in H&E whole slide images using additive multiple instance learning models
    Markey, Miles
    Kim, Juhyun
    Goldstein, Zvi
    Gerardin, Ylaine
    Brosnan-Cashman, Jacqueline
    Javed, Syed Ashar
    Juyal, Dinkar
    Padigela, Harshith
    Yu, Limin
    Rahsepar, Bahar
    Abel, John
    Hennek, Stephanie
    Khosla, Archit
    Parmar, Chintan
    Taylor-Weiner, Amaro
    MOLECULAR CANCER THERAPEUTICS, 2023, 22 (12)
  • [23] A systematic pan-cancer study on deep learning-based prediction of multi-omic biomarkers from routine pathology images
    Salim Arslan
    Julian Schmidt
    Cher Bass
    Debapriya Mehrotra
    Andre Geraldes
    Shikha Singhal
    Julius Hense
    Xiusi Li
    Pandu Raharja-Liu
    Oscar Maiques
    Jakob Nikolas Kather
    Pahini Pandya
    Communications Medicine, 4
  • [24] A systematic pan-cancer study on deep learning-based prediction of multi-omic biomarkers from routine pathology images
    Arslan, Salim
    Schmidt, Julian
    Bass, Cher
    Mehrotra, Debapriya
    Geraldes, Andre
    Singhal, Shikha
    Hense, Julius
    Li, Xiusi
    Raharja-Liu, Pandu
    Maiques, Oscar
    Kather, Jakob Nikolas
    Pandya, Pahini
    COMMUNICATIONS MEDICINE, 2024, 4 (01):
  • [25] Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks
    Yao, Jiawen
    Zhu, Xinliang
    Jonnagaddala, Jitendra
    Hawkins, Nicholas
    Huang, Junzhou
    MEDICAL IMAGE ANALYSIS, 2020, 65
  • [26] Prediction of colorectal cancer microsatellite instability and tumor mutational burden from histopathological images using multiple instance learning
    Wang, Wenyan
    Shi, Wei
    Nie, Chuanqi
    Xing, Weipeng
    Yang, Hailong
    Li, Feng
    Liu, Jinyang
    Tian, Geng
    Wang, Bing
    Yang, Jialiang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [27] Developing analysis platform for pan-cancer study of DNA methylation, mirna and lncrna expression based on tumor subtypes using TCGA data
    Chandrashekar, Darshan Shimoga
    Creighton, Chad J.
    Ponce-Rodriguez, Israel
    Varambally, Sooryanarayana
    CANCER RESEARCH, 2019, 79 (13)
  • [28] A comparative study of multiple instance learning methods for cancer detection using T-cell receptor sequences
    Xiong, Danyi
    Zhang, Ze
    Wang, Tao
    Wang, Xinlei
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3255 - 3268
  • [29] A deep learning approach utilizing clinical and molecular data for identifying prognostic biomarkers in patients treated with immune checkpoint inhibitors: An ORIEN pan-cancer study
    Saghand, Payman Ghasemi
    El Naqa, Issam
    Tan, Aik Choon
    Xie, Mengyu
    Dai, Donghai
    Chen, James Lin
    Ratan, Aakrosh
    McCarter, Martin
    Carpten, John D.
    Shah, Harsh
    Ikeguchi, Alexandra
    Tripathi, Abhishek
    Puzanov, Igor
    Arnold, Susanne M.
    Churchman, Michelle L.
    Hwu, Patrick
    Conejo-Garcia, Jose
    Dalton, William S.
    Weiner, George J.
    Tarhini, Ahmad A.
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [30] Deep multiple instance learning for predicting chemotherapy response in non-small cell lung cancer using pretreatment CT images
    Runsheng Chang
    Shouliang Qi
    Yanan Wu
    Qiyuan Song
    Yong Yue
    Xiaoye Zhang
    Yubao Guan
    Wei Qian
    Scientific Reports, 12