Obtaining spatially resolved tumor purity maps using deep multiple instance learning in a pan-cancer study

被引:6
|
作者
Oner, Mustafa Umit [1 ,2 ]
Chen, Jianbin [3 ]
Revkov, Egor [2 ,3 ]
James, Anne [4 ]
Heng, Seow Ye [4 ]
Kaya, Arife Neslihan [3 ]
Alvarez, Jacob Josiah Santiago [2 ,3 ]
Takano, Angela [4 ]
Cheng, Xin Min [4 ]
Lim, Tony Kiat Hon [4 ]
Tan, Daniel Shao Weng [3 ,5 ,6 ]
Zhai, Weiwei [3 ,7 ,8 ]
Skanderup, Anders Jacobsen [2 ,3 ,5 ]
Sung, Wing-Kin [2 ,3 ]
Lee, Hwee Kuan [2 ,9 ,10 ,11 ,12 ]
机构
[1] ASTAR, Bioinformat Inst, Singapore 138671, Singapore
[2] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
[3] ASTAR, Genome Inst Singapore, Singapore 138672, Singapore
[4] Singapore Gen Hosp, Dept Anat Pathol, Singapore 169608, Singapore
[5] Natl Canc Ctr Singapore, Div Med Oncol, Singapore 169610, Singapore
[6] Duke NUS Med Sch, Oncol Acad Clin Programme, Singapore 169857, Singapore
[7] Chinese Acad Sci, Inst Zool, Key Lab Zool Systemat & Evolut, Beijing 100101, Peoples R China
[8] Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China
[9] Singapore Eye Res Inst SERI, Singapore 169856, Singapore
[10] Image & Pervas Access Lab IPAL, Singapore 138632, Singapore
[11] Rehabil Res Inst Singapore, Singapore 308232, Singapore
[12] Singapore Inst Clin Sci, Singapore 117609, Singapore
来源
PATTERNS | 2022年 / 3卷 / 02期
关键词
COPY NUMBER; HETEROGENEITY; MICROENVIRONMENT; QUANTIFICATION; IDENTIFICATION; PERCENTAGE; EVOLUTION; IMPACT; DNA;
D O I
10.1016/j.patter.2021.100399
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tumor purity is the percentage of cancer cells within a tissue section. Pathologists estimate tumor purity to select samples for genomic analysis by manually reading hematoxylin-eosin (H&E)-stained slides, which is tedious, time consuming, and prone to inter-observer variability. Besides, pathologists' estimates do not correlate well with genomic tumor purity values, which are inferred from genomic data and accepted as accurate for downstream analysis. We developed a deep multiple instance learning model predicting tumor purity from H&E-stained digital histopathology slides. Our model successfully predicted tumor purity in eight The Cancer Genome Atlas (TCGA) cohorts and a local Singapore cohort. The predictions were highly consistent with genomic tumor purity values. Thus, our model can be utilized to select samples for genomic analysis, which will help reduce pathologists' workload and decrease inter-observer variability. Furthermore, our model provided tumor purity maps showing the spatial variation within sections. They can help better understand the tumor microenvironment.
引用
收藏
页数:15
相关论文
共 42 条
  • [1] Pan-cancer characterization of tumor-immune interactions using spatially resolved transcriptomics
    Pei, Guangsheng
    Wu, Jingjing
    Dai, Enyu
    Liu, Yunhe
    Han, Guangchun
    Hu, Jian
    Peng, Fuduan
    Cho, Kyung S.
    Jiang, Jiahui
    Zhang, Daiwei
    Sinjab, Ansam F.
    Zhang, Boyu
    Song, Shumei
    Fujimoto, Junya
    Soto, Luisa M. Solis
    Maitra, Anirban
    Ajani, Jaffer
    Li, Mingyao
    Kadara, Humam
    Wang, Linghua
    CANCER RESEARCH, 2023, 83 (07)
  • [2] Deep learning identifies conserved pan-cancer tumor features
    Noorbakhsh, Javad
    Farahmand, Saman
    Pour, Ali Foroughi
    Namburi, Sandeep
    Caruana, Dennis
    Rimm, David
    Soltanieh-Ha, Mohammad
    Zarringhalam, Kourosh
    Chuang, Jeffrey H.
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [3] Pan-cancer characterization of cancer cell state and plasticity using spatially resolved transcriptomics
    Pei, Guangsheng
    Cho, Kyung S.
    Liu, Yunhe
    Alejandra, Serrano
    Lazcano, Rossana
    Dai, Enyu
    Han, Guangchun
    Peng, Fuduan
    Zhang, Daiwei
    Chu, Yanshuo
    Sinjab, Ansam F.
    Jiang, Jiahui
    Li, Mingyao
    Yee, Cassian
    Futreal, Andrew
    Lazar, Alex
    Kadara, Humam
    Gao, Jianjun
    Soto, Luisa M.
    Maitra, Anirban
    Ajani, Jaffer
    Wang, Linghua
    CANCER RESEARCH, 2024, 84 (06)
  • [4] PAN-CANCER PROGNOSIS PREDICTION USING MULTIMODAL DEEP LEARNING
    Silva, Luis A. Vale
    Rohr, Karl
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 568 - 571
  • [5] Genomic pan-cancer classification using image-based deep learning
    Ye, Taoyu
    Li, Sen
    Zhang, Yang
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 835 - 846
  • [6] Predicting DNA accessibility in the pan-cancer tumor genome using RNA-Seq, WGS, and deep learning
    Wnuk, Kamil
    Sudol, Jeremi
    Rabizadeh, Shahrooz
    Soon-Shiong, Patrick
    Szeto, Christopher
    Vaske, Charles
    CANCER RESEARCH, 2017, 77
  • [7] Genomic pan-cancer classification using image-based deep learning
    Ye T.
    Li S.
    Zhang Y.
    Zhang, Yang (zhangyang07@hit.edu.cn), 1600, Elsevier B.V. (19): : 835 - 846
  • [8] Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment
    Ma, Chenxi
    Yang, Chengzhe
    Peng, Ai
    Sun, Tianyong
    Ji, Xiaoli
    Mi, Jun
    Wei, Li
    Shen, Song
    Feng, Qiang
    MOLECULAR CANCER, 2023, 22 (01)
  • [9] Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment
    Chenxi Ma
    Chengzhe Yang
    Ai Peng
    Tianyong Sun
    Xiaoli Ji
    Jun Mi
    Li Wei
    Song Shen
    Qiang Feng
    Molecular Cancer, 22
  • [10] Pan-cancer analysis of tumor microenvironment using deep learning-based cancer stroma and immune profiling in H&E images
    Paeng, Kyunghyun
    Jung, Geunyoung
    Lee, Sarah
    Cho, Soo Youn
    Cho, Eun Yoon
    Song, Sang Yong
    CANCER RESEARCH, 2019, 79 (13)