An inverse problem in an elastic domain with a crack : a fictitious domain approach
被引:2
|
作者:
Bodart, Oliver
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, FranceUniv Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, France
Bodart, Oliver
[1
]
Cayol, Valerie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Clermont Auvergne, Lab Magmas & Volcans, OPGC, CNRS,IRD, F-63000 Clermont Ferrand, FranceUniv Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, France
Cayol, Valerie
[2
]
Dabaghi, Farshid
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jean Monnet, Inst Camille Jordan, F-42023 St Etienne, FranceUniv Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, France
Dabaghi, Farshid
[3
]
Koko, Jonas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Clermont Auvergne, UMR 6158, LIMOS, CNRS, Campus Cezeaux,BP 10448, F-63173 Aubiere, FranceUniv Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, France
Koko, Jonas
[4
]
机构:
[1] Univ Jean Monnet St Etienne, Inst Camille Jordan, CNRS, UMR 5208, F-42023 St Etienne, France
An inverse problem applied to volcanology is studied. It consists in the determination of the variable pressure applied to a crack in order to fit observed ground displacements. The deformation of the volcano is assumed to be governed by linear elasticity. The direct problem is solved via a fictitious domain method, using a finite element discretization of XFEM type. The ground misfit is minimized using a combination of a domain decomposition and optimatily conditions. The gradient of the cost function is derived from a sensitivity analysis. Discretization of the problem is studied. Numerical tests (in 2D and 3D) are presented to illustrate the effectiveness of the proposed approach. In particular, we find that a quasi-Newton method is more efficient than a conjugate gradient method for solving the optimization problem.
机构:
Charles Univ Prague, Fac Math & Phys, Dept Numer Math, Prague 18675 8, Czech RepublicCharles Univ Prague, Fac Math & Phys, Dept Numer Math, Prague 18675 8, Czech Republic
Haslinger, Jaroslav
Renard, Yves
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lyon, CNRS, INSA Lyon,ICJ UMR5208, LaMCoS UMR5259, F-69621 Villeurbanne, FranceCharles Univ Prague, Fac Math & Phys, Dept Numer Math, Prague 18675 8, Czech Republic