Multi-Granularity Semantic Aware Graph Model for Reducing Position Bias in Emotion-Cause Pair Extraction

被引:0
|
作者
Bao, Yinan [1 ,2 ]
Mao, Qianwen [1 ,2 ]
Wei, Lingwei [1 ,2 ]
Zhou, Wei [1 ]
Hu, Songlin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Emotion-Cause Pair Extraction (ECPE) task aims to extract emotions and causes as pairs from documents. We observe that the relative distance distribution of emotions and causes is extremely imbalanced in the typical ECPE dataset. Existing methods have set a fixed size window to capture relations between neighboring clauses. However, they neglect the effective semantic connections between distant clauses, leading to poor generalization ability towards position-insensitive data. To alleviate the problem, we propose a novel Multi-Granularity Semantic Aware Graph model (MGSAG) to incorporate fine-grained and coarse-grained semantic features jointly, without regard to distance limitation. In particular, we first explore semantic dependencies between clauses and keywords extracted from the document that convey fine-grained semantic features, obtaining keywords enhanced clause representations. Besides, a clause graph is also established to model coarse-grained semantic relations between clauses. Experimental results indicate that MGSAG surpasses the existing state-of-the-art ECPE models. Especially, MGSAG outperforms other models significantly in the condition of position-insensitive data.
引用
收藏
页码:1203 / 1213
页数:11
相关论文
共 49 条
  • [21] Emotion-cause pair extraction based on machine reading comprehension model
    Ting Wei Chang
    Yao-Chung Fan
    Arbee L.P. Chen
    Multimedia Tools and Applications, 2022, 81 : 40653 - 40673
  • [22] Semantic Decision Internal-Attention Graph Convolutional Network for End-to-End Emotion-Cause Pair Extraction
    Zhang, Dianyuan
    Zhu, Zhenfang
    Qi, Jiangtao
    Zhang, Guangyuan
    Zhong, Linghui
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2023, 19 (01)
  • [23] Clause Fusion-Based Emotion Embedding Model for Emotion-Cause Pair Extraction
    Li, Zhiwei
    Rao, Guozheng
    Zhang, Li
    Wang, Xin
    Cong, Qing
    Feng, Zhiyong
    WEB AND BIG DATA, PT II, APWEB-WAIM 2022, 2023, 13422 : 38 - 52
  • [24] A Multi-Task Learning Neural Network for Emotion-Cause Pair Extraction
    Wu, Sixing
    Chen, Fang
    Wu, Fangzhao
    Huang, Yongfeng
    Li, Xing
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2212 - 2219
  • [25] Emotion-cause pair extraction with bidirectional multi-label sequence tagging
    Liu, Jintao
    Zhang, Zequn
    Guo, Zhi
    Jin, Li
    Li, Xiaoyu
    Wei, Kaiwen
    Sun, Xian
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30343 - 30358
  • [26] Emotion-cause pair extraction with bidirectional multi-label sequence tagging
    Jintao Liu
    Zequn Zhang
    Zhi Guo
    Li Jin
    Xiaoyu Li
    Kaiwen Wei
    Xian Sun
    Applied Intelligence, 2023, 53 : 30400 - 30415
  • [27] Optimizing emotion-cause pair extraction task by using mutual assistance single-task model, clause position information and semantic features
    Shi, Jiawen
    Li, Hong
    Zhou, Jiale
    Pang, Zhicheng
    Wang, Chiyu
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (04): : 4759 - 4778
  • [28] An effective multi-task learning model for end-to-end emotion-cause pair extraction
    Li, Chenbing
    Hu, Jie
    Li, Tianrui
    Du, Shengdong
    Teng, Fei
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3519 - 3529
  • [29] An effective multi-task learning model for end-to-end emotion-cause pair extraction
    Chenbing Li
    Jie Hu
    Tianrui Li
    Shengdong Du
    Fei Teng
    Applied Intelligence, 2023, 53 : 3519 - 3529
  • [30] An Emotion-Cause Pair Extraction Model Based on Multichannel Compact Bilinear Pooling
    Huang J.
    Xu S.
    Cai E.
    Wu Z.
    Guo M.
    Zhu J.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58 (01): : 21 - 28