Investigation on specific adsorption of hydrogen on lithium-doped mesoporous silica

被引:9
|
作者
Kubo, Masaru [1 ]
Ushiyama, Hiroshi [1 ]
Shimojima, Atsushi [1 ]
Okubo, Tatsuya [1 ]
机构
[1] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
基金
日本学术振兴会;
关键词
Hydrogen adsorption; Li doping; Mesoporous silica; Quantum chemistry calculation; METAL-ORGANIC FRAMEWORKS; BINDING-ENERGIES; H-2; STORAGE; REDUCTION; CATION; MFI;
D O I
10.1007/s10450-010-9316-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reports the synthesis, structure, and hydrogen adsorption property of Li-doped mesoporous silica (MPS) with a 2D hexagonal structure. The Li-doping is achieved by impregnation of the cylindrical mesopores with an ethanol solution of lithium chloride followed by heat treatment. Detailed characterization by solid-state NMR, TG-MS, and FT-IR suggests that, during the heat treatment, lithium chloride reacts with surface ethoxy groups (a parts per thousand Si-OEt) to form a parts per thousand SiOLi groups, while ethyl chloride is released into the gas phase. The hydrogen uptake at 77 K and 1 atm increases from 0.68 wt% for the undoped MPS to 0.81 wt% for Li-doped MPS (Li-MPS). The isosteric heat of adsorption is 4.8 kJ mol(-1), which is consistent with the quantum chemistry calculation result (5.12 kJ mol(-1)). The specific hydrogen adsorption on Li-MPS would be explained by the frontier orbital interaction between HOMO of hydrogen molecules and LUMO of a parts per thousand SiOLi. These findings provide an important insight into the development of hydrogen storage materials with specific adsorption sites.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 50 条
  • [41] In situ SAXS investigation of dibromomethane adsorption in ordered mesoporous silica
    Evangelos P. Favvas
    Konstantinos L. Stefanopoulos
    Achilles Vairis
    John W. Nolan
    Karsten D. Joensen
    Athanasios C. Mitropoulos
    Adsorption, 2013, 19 : 331 - 338
  • [42] Peculiarities of charge compensation in lithium-doped hydroxyapatite
    Goldberg, Margarita A.
    Gafurov, Marat R.
    Makshakova, Olga N.
    Smirnov, Sergey, V
    Fomin, Alexander S.
    Murzakhanov, Fadis F.
    Komlev, Vladimir S.
    HELIYON, 2024, 10 (04)
  • [43] On the possibility of using lithium-doped copper oxide in lithium cells
    Kuksenko, SP
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2004, 77 (06) : 1019 - 1021
  • [44] ANNEALING MODEL FOR LITHIUM-DOPED SOLAR CELLS
    HORNE, WE
    MADARAS, BK
    RUSSELL, DA
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1973, NS20 (06) : 250 - 255
  • [46] On the Possibility of Using Lithium-doped Copper Oxide in Lithium Cells
    S. P. Kuksenko
    Russian Journal of Applied Chemistry, 2004, 77 : 1019 - 1021
  • [47] MOISTURE EFFECTS IN LITHIUM-DOPED POLYIMIDE FILMS
    KHOR, E
    GAY, MS
    WIGHTMAN, JP
    TAYLOR, LT
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1985, 23 (01) : 175 - 182
  • [48] LITHIUM-DOPED GALLIUM ARSENIDE TUNNEL DIODES
    EPSTEIN, AS
    CALDWELL, JF
    JOURNAL OF APPLIED PHYSICS, 1964, 35 (10) : 3050 - &
  • [49] THERMAL-CONDUCTIVITY OF LITHIUM-DOPED MGO
    FAGALY, RL
    WEINSTOCK, H
    CHEN, Y
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (03): : 236 - 236
  • [50] Magnon gap tuning in lithium-doped MnTe
    Yumnam, George
    Moseley, Duncan H.
    Paddison, Joseph A. M.
    Suggs, Christiana Z.
    Zappala, Emma
    Parker, David S.
    Granroth, Garrett E.
    Morris, Gerald D.
    Polash, Md Mobarak Hossain
    Vashaee, Daryoosh
    Mcguire, Michael A.
    Zhao, Huaizhou
    Manley, Michael E.
    Frandsen, Benjamin A.
    Hermann, Raphael P.
    PHYSICAL REVIEW B, 2024, 109 (21)