Investigation on specific adsorption of hydrogen on lithium-doped mesoporous silica

被引:9
|
作者
Kubo, Masaru [1 ]
Ushiyama, Hiroshi [1 ]
Shimojima, Atsushi [1 ]
Okubo, Tatsuya [1 ]
机构
[1] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
基金
日本学术振兴会;
关键词
Hydrogen adsorption; Li doping; Mesoporous silica; Quantum chemistry calculation; METAL-ORGANIC FRAMEWORKS; BINDING-ENERGIES; H-2; STORAGE; REDUCTION; CATION; MFI;
D O I
10.1007/s10450-010-9316-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reports the synthesis, structure, and hydrogen adsorption property of Li-doped mesoporous silica (MPS) with a 2D hexagonal structure. The Li-doping is achieved by impregnation of the cylindrical mesopores with an ethanol solution of lithium chloride followed by heat treatment. Detailed characterization by solid-state NMR, TG-MS, and FT-IR suggests that, during the heat treatment, lithium chloride reacts with surface ethoxy groups (a parts per thousand Si-OEt) to form a parts per thousand SiOLi groups, while ethyl chloride is released into the gas phase. The hydrogen uptake at 77 K and 1 atm increases from 0.68 wt% for the undoped MPS to 0.81 wt% for Li-doped MPS (Li-MPS). The isosteric heat of adsorption is 4.8 kJ mol(-1), which is consistent with the quantum chemistry calculation result (5.12 kJ mol(-1)). The specific hydrogen adsorption on Li-MPS would be explained by the frontier orbital interaction between HOMO of hydrogen molecules and LUMO of a parts per thousand SiOLi. These findings provide an important insight into the development of hydrogen storage materials with specific adsorption sites.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 50 条
  • [1] Investigation on specific adsorption of hydrogen on lithium-doped mesoporous silica
    Masaru Kubo
    Hiroshi Ushiyama
    Atsushi Shimojima
    Tatsuya Okubo
    Adsorption, 2011, 17 : 211 - 218
  • [2] Computational investigation of adsorption of molecular hydrogen on lithium-doped corannulene
    Zhang, Y.
    Scanlon, L. G.
    Rottmayer, M. A.
    Balbuena, P. B.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45): : 22532 - 22541
  • [3] Atomic hydrogen adsorption on lithium-doped graphite surfaces
    Allouche, A.
    Krstic, P. S.
    CARBON, 2012, 50 (02) : 510 - 517
  • [4] The effect of surface oxidation on atomic hydrogen adsorption on lithium-doped graphite surfaces
    Allouche, A.
    Krstic, P. S.
    CARBON, 2012, 50 (10) : 3882 - 3888
  • [5] A computational study on the hydrogen adsorption capacity of various lithium-doped boron hydrides
    Pan, Sudip
    Giri, Santanab
    Chattaraj, Pratim K.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (04) : 425 - 434
  • [6] INVESTIGATION OF CONVERTED REGIONS IN LITHIUM-DOPED GERMANIUM
    BANNAYA, VF
    GERSHENZON, EM
    GONCHAROV, LA
    ORLOV, LA
    ORLOVA, SL
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1981, 15 (07): : 730 - 736
  • [7] TSEE ADSORPTION MAXIMUM OF LITHIUM-DOPED BED CERAMICS
    SIEGEL, V
    BOROS, L
    KIRCHNER, HH
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 46 (01): : 3 - 11
  • [8] Lithium-Doped Silica-Rich MIL-101(Cr) for Enhanced Hydrogen Uptake
    Panchariya, Dharmendra K.
    Kumar, E. Anil
    Singh, Sanjay K.
    CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (20) : 3728 - 3735
  • [9] Superconductivity of lithium-doped hydrogen under high pressure
    Xie, Yu
    Li, Quan
    Oganov, Artem R.
    Wang, Hui
    ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY, 2014, 70 : 104 - 111
  • [10] Modelling the interaction of molecular hydrogen with lithium-doped hydrogen storage materials
    Kolmann, Stephen J.
    Chan, Bun
    Jordan, Meredith J. T.
    CHEMICAL PHYSICS LETTERS, 2008, 467 (1-3) : 126 - 130