A proof of Price's Law on Schwarzschild black hole manifolds for all angular momenta

被引:54
|
作者
Donninger, Roland [1 ]
Schlag, Wilhelm [1 ]
Soffer, Avy [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
Dispersive estimates for wave equation; Spectral and scattering theory; Schwarzschild black hole; RELATIVISTIC GRAVITATIONAL COLLAPSE; SEMILINEAR WAVE-EQUATION; NONSPHERICAL PERTURBATIONS; SCHRODINGER EVOLUTIONS; KERR GEOMETRY; CONICAL ENDS; DECAY; STABILITY; SCALAR; SPACE;
D O I
10.1016/j.aim.2010.06.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Price's Law states that linear perturbations of a Schwarzschild black hole fall off as t(-2l-3) for t -> infinity provided the initial data decay sufficiently fast at spatial infinity. Moreover, if the perturbations are initially static (i.e., their time derivative is zero), then the decay is predicted to be t(-2l-4). We give a proof of t(-2l-2) decay for general data in the form of weighted L-1 to L-infinity bounds for solutions of the Regge-Wheeler equation. For initially static perturbations we obtain t(-2l-3). The proof is based on an integral representation of the solution which follows from self-adjoint spectral theory. We apply two different perturbative arguments in order to construct the corresponding spectral measure and the decay bounds are obtained by appropriate oscillatory integral estimates. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 540
页数:57
相关论文
共 50 条
  • [21] Corrected Stefan-Boltzmann Law and Lifespan of Schwarzschild-de-sitter Black Hole
    Yan, Shi
    He, Tang-Mei
    Zhang, Jing-Yi
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 65 (06) : 731 - 734
  • [22] Almost Price's law in Schwarzschild and decay estimates in Kerr for Maxwell field
    Ma, Siyuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 339 : 1 - 89
  • [23] Fermion tunneling, instability, and first law of Rindler modified Schwarzschild black hole as a thermodynamic system
    Mirekhtiary, S. Fatemeh
    Sakalli, I
    Bashiry, V
    CANADIAN JOURNAL OF PHYSICS, 2021, 99 (02) : 118 - 124
  • [24] Detweiler's redshift invariant for extended bodies orbiting a Schwarzschild black hole
    Bini, Donato
    Geralico, Andrea
    Steinhoff, Jan
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [25] Sommerfeld's quantum condition of action and the spectra of quantum Schwarzschild black hole
    Liu, L
    Pei, SY
    CHINESE PHYSICS LETTERS, 2004, 21 (10) : 1887 - 1889
  • [26] 3RD LAW OF BLACK-HOLE DYNAMICS - A FORMULATION AND PROOF
    ISRAEL, W
    PHYSICAL REVIEW LETTERS, 1986, 57 (04) : 397 - 399
  • [27] Do all BPS black hole microstates carry zero angular momentum?
    Chowdhury, Abhishek
    Garavuso, Richard S.
    Mondal, Swapnamay
    Sen, Ashoke
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [28] Do all BPS black hole microstates carry zero angular momentum?
    Abhishek Chowdhury
    Richard S. Garavuso
    Swapnamay Mondal
    Ashoke Sen
    Journal of High Energy Physics, 2016
  • [29] Electromagnetic radiation generated by a charged particle falling radially into a Schwarzschild black hole: A complex angular momentum description
    Folacci, Antoine
    El Hadj, Mohamed Ould
    PHYSICAL REVIEW D, 2020, 102 (02):
  • [30] The Schwarzschild black hole's remnant via the Bohr-Sommerfeld quantization rule
    Chen, Deyou
    Zeng, Xiaoxiong
    GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (03) : 631 - 641