A proof of Price's Law on Schwarzschild black hole manifolds for all angular momenta

被引:54
|
作者
Donninger, Roland [1 ]
Schlag, Wilhelm [1 ]
Soffer, Avy [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
Dispersive estimates for wave equation; Spectral and scattering theory; Schwarzschild black hole; RELATIVISTIC GRAVITATIONAL COLLAPSE; SEMILINEAR WAVE-EQUATION; NONSPHERICAL PERTURBATIONS; SCHRODINGER EVOLUTIONS; KERR GEOMETRY; CONICAL ENDS; DECAY; STABILITY; SCALAR; SPACE;
D O I
10.1016/j.aim.2010.06.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Price's Law states that linear perturbations of a Schwarzschild black hole fall off as t(-2l-3) for t -> infinity provided the initial data decay sufficiently fast at spatial infinity. Moreover, if the perturbations are initially static (i.e., their time derivative is zero), then the decay is predicted to be t(-2l-4). We give a proof of t(-2l-2) decay for general data in the form of weighted L-1 to L-infinity bounds for solutions of the Regge-Wheeler equation. For initially static perturbations we obtain t(-2l-3). The proof is based on an integral representation of the solution which follows from self-adjoint spectral theory. We apply two different perturbative arguments in order to construct the corresponding spectral measure and the decay bounds are obtained by appropriate oscillatory integral estimates. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 540
页数:57
相关论文
共 50 条
  • [1] Snell's law for the Schwarzschild black hole
    Zheng, X. H.
    Zheng, J. X.
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [2] COMPLEX ANGULAR MOMENTA AND THE BLACK-HOLE GLORY
    ANDERSSON, N
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (12) : 3003 - 3012
  • [3] ADM and Bondi 4-momenta for the ultrarelativistic Schwarzschild black hole
    Aichelburg, PC
    Balasin, H
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (12) : 3841 - 3844
  • [4] Noncommutative Schwarzschild black hole and area law
    Banerjee, Rabin
    Majhi, Bibhas Ranjan
    Modak, Sujoy Kumar
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (08)
  • [5] Schwarzschild Black Hole from Perturbation Theory to All Orders
    Damgaard, Poul H.
    Lee, Kanghoon
    PHYSICAL REVIEW LETTERS, 2024, 132 (25)
  • [6] Entropy of the Schwarzschild black hole to all orders in the Planck length
    Kim, Yong-Wan
    Park, Young-Jai
    PHYSICS LETTERS B, 2007, 655 (3-4) : 172 - 177
  • [7] Schwarzschild Black Hole from Perturbation Theory to All Orders
    Damgaard, Poul H.
    Lee, Kanghoon
    Physical Review Letters, 132 (25):
  • [8] Price's Law for Spin Fields on a Schwarzschild Background
    Ma, Siyuan
    Zhang, Lin
    ANNALS OF PDE, 2022, 8 (02)
  • [9] Price’s Law for Spin Fields on a Schwarzschild Background
    Siyuan Ma
    Lin Zhang
    Annals of PDE, 2022, 8
  • [10] Voros product, noncommutative Schwarzschild black hole and corrected area law
    Banerjee, Rabin
    Gangopadhyay, Sunandan
    Modak, Sujoy Kumar
    PHYSICS LETTERS B, 2010, 686 (2-3) : 181 - 187