Application of chemical looping air separation for MILD oxy-combustion in the supercritical power plant with CO2 capture

被引:7
|
作者
Chen, Shiyi [1 ]
Hu, Jun [1 ]
Sun, Zhao [1 ]
Xiang, Wenguo [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
来源
ENERGY SCIENCE & ENGINEERING | 2018年 / 6卷 / 05期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
chemical looping air separation; CO2; capture; MILD oxy-combustion; supercritical power plant; PULVERIZED-COAL; FLAMELESS COMBUSTION; TEMPERATURE AIR; CARBON STRIPPER; SCALE FURNACE; NATURAL-GAS; FUEL; CARRIER; CU; RECIRCULATION;
D O I
10.1002/ese3.224
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Chemical looping air separation (CLAS) is a novel and promising technology for oxygen production. This paper presents the application of CLAS to the supercritical power plant for MILD oxy-combustion. Compared with the reference conventional supercritical power plant, the power generation efficiency of the CLAS integrated MILD oxy-combustion plant is only reduced by about similar to 1.37% points at the baseline case. CO2 compression process imposes additional similar to 3.97% points efficiency penalty, which is inevitable to all of the CO2 capture technologies. The net power efficiency of the CLAS integrated MILD oxy-combustion plant is similar to 37.37%. Even though a higher reduction reactor temperature could boost the power efficiency and a higher oxidization reactor temperature reversely decreases the power efficiency, the influence of reactor temperature is marginal. The performance of CLAS integrated MILD oxy-combustion plant is not sensitive to excess CO2 and O-2 ratio. Different oxygen carriers have different suitable operating region, but possess similar power efficiency. The carbon capture rate of the CLAS integrated MILD oxy-combustion plant is up to similar to 100%, resulting in a virtually carbon-free fossil power plant.
引用
收藏
页码:490 / 505
页数:16
相关论文
共 50 条
  • [11] Oxy-Combustion Modeling for Direct-Fired Supercritical CO2 Power Cycles
    Strakey, Peter A.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (07):
  • [12] CO2 CAPTURE BY CHEMICAL LOOPING COMBUSTION
    Forernl, Carmen R.
    Adanez, Juan
    Gayan, Pilar
    de Diego, Luis F.
    Garcia-Labiano, Francisco
    Abad, Alberto
    REVISTA COLOMBIANA DE QUIMICA, 2010, 39 (02): : 271 - 285
  • [13] CO2 recovery in a power plant with chemical looping combustion
    Ishida, M.
    Jin, H.
    Energy Conversion and Management, 38 (9999):
  • [14] CO2 recovery in a power plant with chemical looping combustion
    Ishida, M
    Jin, H
    ENERGY CONVERSION AND MANAGEMENT, 1997, 38 : S187 - S192
  • [15] Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture
    Cormos, Calin-Cristian
    ENERGIES, 2018, 11 (11)
  • [16] Conventional Exergetic and Exergoeconomic Analyses of a Power Plant with Chemical Looping Combustion for CO2 Capture
    Petrakopoulou, Fontina
    Tsatsaronis, George
    Morosuk, Tatiana
    INTERNATIONAL JOURNAL OF THERMODYNAMICS, 2010, 13 (03) : 77 - 86
  • [17] CO2 Capture in a Chemical Looping Combustion Power Plant Evaluated With an Advanced Exergetic Analysis
    Petrakopoulou, Fontina
    Tsatsaronis, George
    Morosuk, Tatiana
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2014, 33 (03) : 1017 - 1025
  • [18] Flare gas-to-power by direct intercooled oxy-combustion supercritical CO2 power cycles
    Sleiti, Ahmad K.
    Al-Ammari, Wahib A.
    Aboueata, Khaled M.
    FUEL, 2022, 308
  • [19] Oxy-combustion power plant integration in an oil refinery to reduce CO2 emissions
    Escudero, Ana I.
    Espatolero, Sergio
    Romeo, Luis M.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 45 : 118 - 129
  • [20] The Oxy-CaL process: A novel CO2 capture system by integrating partial oxy-combustion with the Calcium-Looping process
    Ortiz, C.
    Valverde, J. M.
    Chacartegui, R.
    Benitez-Guerrero, M.
    Perejon, A.
    Romeo, L. M.
    APPLIED ENERGY, 2017, 196 : 1 - 17