Regularized (bridge) logistic regression for variable selection based on ROC criterion

被引:0
|
作者
Tian, Guo-Liang [1 ]
Fang, Hong-Bin [2 ]
Liu, Zhenqiu [2 ]
Tan, Ming T. [2 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Univ Maryland, Greenebaum Canc Ctr, Div Biostat, Baltimore, MD 21201 USA
关键词
AUC; EM algorithm; Lasso regression; Logistic regression; MM algorithm; ROC; Variable/feature selection;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is well known that the bridge regression (with tuning parameter less or equal to 1) gives asymptotically unbiased estimates of the nonzero regression parameters while shrinking smaller regression parameters to zero to achieve variable selection. Despite advances in the last several decades in developing such regularized regression models, issues regarding the choice of penalty parameter and the computational methods for models fitting with parameter constraints even for bridge linear regression are still not resolved. In this article, we first propose a new criterion based on an area under the receiver operating characteristic (ROC) curve (AUC) to choose the appropriate penalty parameter as opposed to the conventional generalized cross-validation criterion. The model selected by the AUC criterion is shown to have better predictive accuracy while achieving sparsity simultaneously. We then approach the problem from a constrained parameter model and develop a fast minorization-maximization (MM) algorithm for non-linear optimization with positivity constraints for model fitting. This algorithm is further applied to bridge regression where the regression coefficients are constrained with l(p)-norm with the level of p selected by data for binary responses. Examples of prognostic factors and gene selection are presented to illustrate the proposed method.
引用
收藏
页码:493 / 502
页数:10
相关论文
共 50 条
  • [21] A variable selection method based on Tabu search for logistic regression models
    Pacheco, Joaquin
    Casado, Silvia
    Nunez, Laura
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 199 (02) : 506 - 511
  • [23] ROBUST CRITERION FOR VARIABLE SELECTION IN LINEAR REGRESSION
    Patil, A. B.
    Kashid, D. N.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2009, 5 (02): : 509 - 521
  • [24] On Regularized Sparse Logistic Regression
    Zhang, Mengyuan
    Liu, Kai
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1535 - 1540
  • [25] Regularized Logistic Regression Based Classification for Infrared Images
    Mirzaei, Golrokh
    Jamali, Mohsin M.
    Gorsevski, Peter V.
    Frizado, Joseph
    Bingman, Verner P.
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 487 - 490
  • [26] A connected network-regularized logistic regression model for feature selection
    Lingyu Li
    Zhi-Ping Liu
    Applied Intelligence, 2022, 52 : 11672 - 11702
  • [27] Adaptive hypergraph regularized logistic regression model for bioinformatic selection and classification
    Yong Jin
    Huaibin Hou
    Mian Qin
    Wei Yang
    Zhen Zhang
    Applied Intelligence, 2024, 54 : 2349 - 2360
  • [28] Adaptive hypergraph regularized logistic regression model for bioinformatic selection and classification
    Jin, Yong
    Hou, Huaibin
    Qin, Mian
    Yang, Wei
    Zhang, Zhen
    APPLIED INTELLIGENCE, 2024, 54 (03) : 2349 - 2360
  • [29] A connected network-regularized logistic regression model for feature selection
    Li, Lingyu
    Liu, Zhi-Ping
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11672 - 11702
  • [30] A regularized logistic regression based model for supervised learning
    Brito-Pacheco, Carlos
    Brito-Loeza, Carlos
    Martin-Gonzalez, Anabel
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2020, 14