Regularized (bridge) logistic regression for variable selection based on ROC criterion
被引:0
|
作者:
Tian, Guo-Liang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Tian, Guo-Liang
[1
]
Fang, Hong-Bin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Greenebaum Canc Ctr, Div Biostat, Baltimore, MD 21201 USAUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Fang, Hong-Bin
[2
]
Liu, Zhenqiu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Greenebaum Canc Ctr, Div Biostat, Baltimore, MD 21201 USAUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Liu, Zhenqiu
[2
]
Tan, Ming T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Greenebaum Canc Ctr, Div Biostat, Baltimore, MD 21201 USAUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Tan, Ming T.
[2
]
机构:
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Univ Maryland, Greenebaum Canc Ctr, Div Biostat, Baltimore, MD 21201 USA
AUC;
EM algorithm;
Lasso regression;
Logistic regression;
MM algorithm;
ROC;
Variable/feature selection;
D O I:
暂无
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
It is well known that the bridge regression (with tuning parameter less or equal to 1) gives asymptotically unbiased estimates of the nonzero regression parameters while shrinking smaller regression parameters to zero to achieve variable selection. Despite advances in the last several decades in developing such regularized regression models, issues regarding the choice of penalty parameter and the computational methods for models fitting with parameter constraints even for bridge linear regression are still not resolved. In this article, we first propose a new criterion based on an area under the receiver operating characteristic (ROC) curve (AUC) to choose the appropriate penalty parameter as opposed to the conventional generalized cross-validation criterion. The model selected by the AUC criterion is shown to have better predictive accuracy while achieving sparsity simultaneously. We then approach the problem from a constrained parameter model and develop a fast minorization-maximization (MM) algorithm for non-linear optimization with positivity constraints for model fitting. This algorithm is further applied to bridge regression where the regression coefficients are constrained with l(p)-norm with the level of p selected by data for binary responses. Examples of prognostic factors and gene selection are presented to illustrate the proposed method.
机构:
Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Renmin Univ China, Sch Stat, Beijing, Peoples R China
Renmin Univ China, Stat Consulting Ctr, Beijing, Peoples R ChinaRenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Li, Yang
Yu, Chenqun
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Stat, Beijing, Peoples R ChinaRenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Yu, Chenqun
Qin, Yichen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cincinnati, Dept Operat Business Analyt & Informat Syst, Cincinnati, OH USARenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Qin, Yichen
Wang, Limin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chinese Med, Sch Preclin Med, Beijing, Peoples R ChinaRenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Wang, Limin
Chen, Jiaxu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chinese Med, Sch Preclin Med, Beijing, Peoples R ChinaRenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Chen, Jiaxu
Yi, Danhui
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Renmin Univ China, Sch Stat, Beijing, Peoples R China
Renmin Univ China, Stat Consulting Ctr, Beijing, Peoples R ChinaRenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Yi, Danhui
Shia, Ben-Chang
论文数: 0引用数: 0
h-index: 0
机构:
Fu Jen Catholic Univ, Dept Stat & Informat Sci, Taipei, TaiwanRenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Shia, Ben-Chang
Ma, Shuangge
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Stat, Beijing, Peoples R China
Yale Univ, Dept Biostat, New Haven, CT USARenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
机构:
Univ Basque Country UPV EHU, Intelligent Syst Grp, San Sebastian 20018, SpainUniv Basque Country UPV EHU, Intelligent Syst Grp, San Sebastian 20018, Spain
Santana, Roberto
Bielza, Concha
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, Computat Intelligence Grp, Dept Inteligencia Artificial, E-28660 Madrid, SpainUniv Basque Country UPV EHU, Intelligent Syst Grp, San Sebastian 20018, Spain
Bielza, Concha
Larranaga, Pedro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, Computat Intelligence Grp, Dept Inteligencia Artificial, E-28660 Madrid, SpainUniv Basque Country UPV EHU, Intelligent Syst Grp, San Sebastian 20018, Spain
机构:
Mohammed VI Polytech Univ, Ctr Behav Econ & Decis Making, Green City, MoroccoMohammed VI Polytech Univ, Ctr Behav Econ & Decis Making, Green City, Morocco
El Guide, M.
Jbilou, K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Littoral Cote dOpale, Dept Math, Calais, France
Mohammed VI Polytech Univ, Complex Syst Engn & Human Syst, Green City, MoroccoMohammed VI Polytech Univ, Ctr Behav Econ & Decis Making, Green City, Morocco
Jbilou, K.
Koukouvinos, C.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Tech Univ Athens, Dept Math, Athens, GreeceMohammed VI Polytech Univ, Ctr Behav Econ & Decis Making, Green City, Morocco
Koukouvinos, C.
Lappa, A.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Tech Univ Athens, Dept Math, Athens, GreeceMohammed VI Polytech Univ, Ctr Behav Econ & Decis Making, Green City, Morocco
机构:
North Carolina State Univ, Dept Stat, Raleigh, NC USANorth Carolina State Univ, Dept Stat, Raleigh, NC USA
Tian, Yiqing
Bondell, Howard D.
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Stat, Raleigh, NC USA
Univ Melbourne, Sch Math & Stat, Peter Hall Bldg, Parkville, Vic 3010, AustraliaNorth Carolina State Univ, Dept Stat, Raleigh, NC USA